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Abstract
In this article, the robust Stackelberg controllability (RSC)problem is studied for a non-
linear fourth-order parabolic equation, namely the Kuramoto–Sivashinsky equation.
When three external sources are acting into the system, the RSC problem consists
essentially in combining two subproblems: the first one is a saddle point problem
among two sources. Such sources are called the “follower control” and its associated
“disturbance signal.” This procedure corresponds to a robust control problem. The
second one is a hierarchic control problem (Stackelberg strategy), which involves the
third force, so-called leader control. The RSC problem establishes a simultaneous
game for these forces in the sense that the leader control has as objective to verify a
controllability property, while the follower control and perturbation solve a robust con-
trol problem. In this paper, the leader control obeys to the exact controllability to the
trajectories. Additionally, iterative algorithms to approximate the robust control prob-
lem as well as the robust Stackelberg strategy for the nonlinear Kuramoto–Sivashinsky
equation are developed and implemented.

Keywords Stackelberg strategy · Robust control · controllability · Finite element
method · Adams–Bashforth method · Kuramoto–Sivashinsky equation

1 Main problems: Robust Stackelberg controllability

The Stackelberg strategy is a concept from game theory which appears with the pub-
lication by Heinrich Von Stackelberg in 1934 “Market structure and equilibrium.” It
is a non-cooperative competition game with applications to economic processes that
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involves two-player with a hierarchic structure, namely the first player (called the
leader) enforces its strategy on the other player, and then the second player (called the
follower) reacts trying to win or optimize the answer to the leader movement, see [37,
39]. The previous sentences correspond to a general notion on a Stackelberg strategy,
which is applied in the context of hierarchic control for some models described by
partial differential equations (PDEs).

On the other hand, the robustness in a control system is the sensitivity to the effects
that are not considered in the analysis and design such as disturbance signals and noise
measurements. In other words, a system is said to be robust when it is hardy, durable
and resilient, and also stable over the range of parameter variations. In this sense,
one could think in the worst-case disturbance of the system and design a controller
which is suited to handle even this extreme situation. Thus, the problem of finding
a robust control involves the problem of finding the worst-case disturbance in the
spirit of a non-cooperative game (when there is no cooperation between the controller
and disturbance function) that means from a mathematical point of view to reach a
saddle point for the pair disturbance controller. In the literature, there are many works
concerning robust control problems, see, for instance, the books [10, 12, 14, 18] and
its references therein for a complete description on this subject.

From a theoretical perspective, recent works have mixed the concept of robust
controlwith aStackelberg strategy and applied it to semilinear and linear heat equations
[20, 21], and to the Navier–Stokes system [32]. This new idea in control theory is
abridged and called “Robust Stackelberg controllability” (RSC), see Problem 3. In
the case of a semilinear heat equation [21], the RSC problem used external forces
acting into the system, where the leader control has as constrain the controllability to
trajectories. On the other hand, [20] solves a RSC problem for the linear heat equation
by considering that the either the leader or follower control acts on a small part of
the boundary. In [20], the leader control satisfies the null controllability property. In
the RSC problem for the Navier–Stokes system [32], all controls are external forces
acting on the systems, the leader control has a local null controllability objective, while
the perturbation and the follower control solve a robust control problem. However,
these three works have three things in common: (1) they deal with systems whose
main operator is a second-order operator (Laplace operator, Stokes operator), (2)
independent of the configuration or localization of forces (either interior or bounded),
the property of the exact controllability to the trajectories for the leader control remains
open for nonlinear systems, and (3) as it can see, they do not present any numerical
framework.

In what follows, we describe the main contributions of this work.

1. We solve the robust internal control problem for the nonlinear KS equation posed
on a bounded domain.Our approach use central ideas from robust boundary control
problem for the same equation [22]. To do that, several points related to regularity
of solutions and to the existence of a saddle point are modified and adapted.
In the numerical context, to our knowledge, this paper contains the first numerical
description concerning the robustness process for the KS equation. Due to the high
order in space (i.e., fourth-order derivates), an appropriate change of variable will
be used to implement low-order finite elements, more precisely P1-type Lagrange
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elements; meanwhile, a θ -scheme/Adams–Bashforth method is created for the
time discretization. Thus, our method does not require a higher-order approach to
the KS equation. Although this paper does not present an exhaustive numerical
analysis of our method, since it is far way of the main goals, several configurations
to the time–space discretization display good results for the error (among the
exact and numeric solution) in the L2-norm and L∞-norm. Besides, from the
algorithms presented in [6, 38] for the Navier–Stokes system, we propose new
iterative schemes of constructing the ascent and descent directions, and whose
basis is the preconditioned nonlinear gradient conjugate method.

2. Oncewe have obtained the robust pair, the robust Stackelberg controllability (RSC)
problem for the KS equation is studied. The second theoretical contribution of our
article is that, as far as we know, we use for the first time the exact control-
lability to the trajectories for the leader control subject to a nonlinear system.
The main novelties are new Carleman inequalities and its relationship with the
robustness parameters. Additionally, since the leader control obeys to the exact
controllability to the trajectories and its formulation includes a coupled system
of fourth-order equations, new algorithms based in regularization techniques are
introduced and implemented. Finally, we want to highlight the sensitivity in the
robustness parameters, the initial data, and also on different subdomains for obtain-
inggood results. Indeed, numerical experiments show that non-cooperative relation
among the leader control and follower might be removed in some sense.

1.1 Main problems

In an abstract setting, the main problems to treat can be formulated as follows: let
(X , 〈·, ·〉) be an Hilbert space and let (A, D(A)) be an unbounded operator in X such
that−A generates an analytic semigroup in X . Let (U , [·, ·]) be another Hilbert space,
and for i = 1, 2, let Bi be bounded operators from U into D(A∗)′. Moreover, let �

be a nonempty bounded connected open subset of Rd of class C∞, d ∈ N, and let ω

be a (small) nonempty open subset of �. Let T > 0 be given. We use the notation
Q := � × (0, T ), � := ∂� × (0, T ).

Let us consider the non-homogeneous evolution problem

{
ut + Au + Nu = h1ω + B1v + B2ψ in Q,

u(·, 0) = u0(·) in �,
(1.1)

where N is associated with the nonlinear part, and the functions h, v, ψ belong to
appropriate spaces. Here, 1ω is the characteristic function of the set ω. In (1.1), the
interior forcing has been decomposed into a function ψ , called disturbance signal,
and two functions, h and v. In our framework, h = h(x, t) will be called the “leader
control”; meanwhile, v = v(x, t) will be called the “follower control.” To be precise,
the interaction between such functions and the problems that arise from them as well
as the operators B1, B2 will be defined below for every problem. In this abstract
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framework, the cost functional is given by

Jr (v, ψ; h) := 1

2

∫∫
Od×(0,T )

|u − ud |2dxdt

+1

2

(
�2

T∫
0

‖B1v‖2Xdt − γ 2

T∫
0

‖B2ψ‖2Y dt
)

, (1.2)

where X ,Y are suitable Sobolev spaces, Od is a nonempty open subset of �, ud is
a given function and �, γ are positive constants. The parameter � can be interpreted
as a measure of the “cost” of the control to the engineer. Thus, when � → +∞,
it corresponds to the “expensive” control and results in v → 0 in the minimization
with respect to v for the present problem. On the other hand, reduced values of �,
corresponding to cheap control, reduce the increase in the cost functional upon the
application of a control v. Similarly, the parameter γ can be interpreted as a measure
of the price of the disturbance. The limit as γ → +∞ results in ψ → 0 in the
maximization with respect to ψ , and reduced values of γ decrease the cost functional
upon the application of a disturbance ψ .

Problem 1 Robust control. In (1.1), h ≡ 0 and B1, B2 are mapping from L2(�) into
itself. The robust internal control problem consists in finding a unique pair (v, ψ) ∈
L2(Q)2 such that

Jr (v, ψ; 0) ≤ Jr (v, ψ; 0) ≤ Jr (v, ψ; 0), ∀(v, ψ) ∈ L2(Q)2, (1.3)

subject to the system (1.1).

Before mentioning the other two problems that we deal in this paper, let u be a solution
of the homogeneous equation:

{
ut + Au + Nu = 0 in Q,

u(·, 0) = u0 in �.
(1.4)

Problem 2 Stackelberg strategy. In (1.1), B2 ≡ 0 and B1 = 1O, where O is a
small open subset of � with O ∩ ω = ∅. The hierarchic control problem con-
sists in finding a leader control h ∈ L2(0, T ; L2(ω)) and a unique follower control
v ∈ L2(0, T ; L2(O))minimizing (1.2), and an associated solution u to (1.1) verifying
u(·, T ) = u(·, T ) in �, where u is solution of (1.4).

Problem 3 Robust Stackelberg controllability. For every fixed leader control h, solve
the saddle point problem for the system (1.1), that is, to find the best control v in the
presence of the disturbance ψ which maximally spoils the follower control for the
system (1.1). Once the saddle point has been identified for each leader control h, we
deal with the problem of finding the control function h satisfying constraints of exact
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controllability to the trajectories. More precisely, we look for a control function

h ∈ L2(0, T ; L2(ω)), subject to the restriction u(·, T ) = u(·, T ) in �. (1.5)

Remark 1 Note that Problem 2 is a particular case of Problem 3 by consideringψ = 0
in (1.2). Thus, a Stackelberg strategy is a direct consequence of the robust Stackelberg
controllability, and therefore, in this articlewewill only treat Problem1 and Problem3.

1.2 Main results

A particular case of (1.1) corresponds to the Kuramoto–Sivashinsky (KS) equation;
it is a fourth-order parabolic equation that serves as a model for phase turbulence in
reaction–diffusion systems [24, 25] and also for modeling the diffusive instabilities
in a laminar flame [29, 33, 36, 41]. This equation obeys to a one-dimensional model,
which for our propose is given by

⎧⎪⎨
⎪⎩
ut + uxxxx + uxx + uux = h1ω + v1O + ψ in (0, 1) × (0, T ) =: Q,

u(0, t) = u(1, t) = ux (0, t) = ux (1, t) = 0 on (0, T ),

u(·, 0) = u0(·) in (0, 1),

(1.6)

where ω and O are nonempty open subsets of (0, 1) such that ω ∩ O = ∅.
From a physical point of view, the term uxx is responsible for an instability at large

scales; the dissipative term uxxxx provides damping at small scales; and the nonlinear
term uux (which has the same form as the one in the Burgers equation) stabilizes by
transferring energy between large and small scales. As mentioned, the terms on the
right-hand side of (1.6) are representing the leader control, the follower control, and
the disturbance signal, respectively.

To our knowledge, there are no results on robust internal control problem for the KS
system (1.6). Thus, our paper fills this gap by using the functional (1.2) with B1 = 1O
into L2((0, 1)) and B2 = I onto L2((0, 1)). More precisely, the Problem 1 is proved
throughout the functional

Jr (v, ψ; h) := 1

2

∫∫
Od×(0,T )

|u − ud |2dxdt

+1

2

⎛
⎜⎝�2

∫∫
O×(0,T )

|v|2dxdt − γ 2
∫∫
Q

|ψ |2dxdt
⎞
⎟⎠ , (1.7)

where ud ∈ L2(0, T ; L2(Od)).
In the context of the robust control, theworks [22, 23] prove robust boundary control

problems for the KS equation. In these articles, the cost functional is clearly different
to the presented for us in (1.2). On the other hand, the techniques of spatially dependent
scaling and static output feedback control are used in [27, 34] for obtaining a robust
controller design and an optimal sensor placement for the KS equation, respectively.
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Our first main result concerns the robust internal control problem for the KS equa-
tion. In order to do that, we introduce the following admissible space for the control
and perturbation

Vad =
{
v ∈ L2(0, T ; L2(O)) | ‖v‖L2(0,T ;L2(O)) ≤ R

4

}
,

�ad =
{
ψ ∈ L2(Q) | ‖ψ‖L2(Q) ≤ R

4

}
,

where R > 0 is the constant given in Lemma 9 (that is, δ = R in Lemma 9).

Theorem 1 Let R > 0 be the constant given in Lemma 9. Let u0 ∈ H2
0 (0, 1) and

h ∈ L2(0, T ; L2(ω)) be fixed such that

‖u0‖H2
0 (0,1) + ‖h‖L2(0,T ;L2(ω)) ≤ R

2
.

Then, for γ and � sufficiently large, there exists a unique saddle point (v̄, ψ̄) ∈
Vad × �ad and u = u(h, ψ̄, v̄) solution of (1.6) such that

Jr (ψ, v; h) ≤ Jr (v, ψ; h) ≤ Jr (v, ψ; h), ∀(v, ψ) ∈ Vad × �ad .

As mentioned, the second problem we aim to solve is to find the minimal norm
control satisfying a controllability to trajectories constrain. More precisely, let us fix
a uncontrolled trajectory of system (1.6), namely a sufficiently regular solution to

⎧⎪⎨
⎪⎩
ut + uxxxx + uxx + uux = 0 in Q,

u(0, t) = u(1, t) = ux (0, t) = ux (1, t) = 0 on (0, T ),

u(·, 0) = u0 in (0, 1).

(1.8)

Thus, according to Problem 3, we look for a control h ∈ L2(0, T ; L2(ω)) satisfying
(1.5).

In the case where v = ψ = 0, system (1.6) is controllable to trajectories [8].
Recently, for the case where the disturbance disappears, that is, in (1.7) ψ ≡ 0, it is
possible to deduce that the system (1.6) satisfies a Stackelberg strategy to trajectories
[7]. In contrast with [7], this paper shows a different role among the forces h, v and ψ

in system (1.6), and therefore, other optimization problems are carried out. In other
works, this paper can be seen as an alternative development based in other Carleman
estimates for solving Problem 2. Actually, in our framework, the theoretical solution to
Problem 2 is a consequence of the simultaneous robust control and hierarchic control,
see Theorem 2.

In order to present our second main result, let us define

Z := C([0, T ]; H2
0 (0, 1)) ∩ L2(0, T ; H4(0, 1)) ∩ L∞(0, T ;W 1,∞(0, 1)). (1.9)
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Theorem 2 Assume that u ∈ Z is the solution of (1.4) and ω ∩ Od �= ∅. Then,
for every T > 0 and O ⊂ (0, 1) open subset such that O ∩ ω = ∅, there exist
γ0, �0, δ > 0 and a positive function ρ = ρ(t) blowing up t = T such that, for any
γ ≥ γ0, � ≥ �0, u0 ∈ L2(0, 1) and ud ∈ L2(0, T ; L2(Od)) satisfying

‖u0 − u0‖L2(0,1) +
∫∫

Od×(0,T )

ρ2(t)|u − ud |2dxdt ≤ δ, (1.10)

there exist a leader control h ∈ L2(0, T ; L2(ω)) and a unique saddle point (v, ψ) ∈
L2(0, T ; L2(O))×L2(Q) for the functional given by (1.7), and an associated solution
u to (1.6) verifying u(·, T ) = u(·, T ) in (0, 1).

It is worth mentioning again that the theoretical results known up to now on robust
Stackelberg controllability (Problem 3) are [20, 21, 32], and there is no evidence on
both numerical algorithms and a controllability to trajectories constrain for the leader
control for nonlinear systems. Therefore, this paper we pretend to show theoretical
results and carry out numerical schemes jointly with its implementation to Problems 1,
3 for the KS equation (1.6).

The rest of the paper is divided as follows: Sect. 2 contains all theoretical and
numerical answers to the robust control problem (see Problem 1) for the system (1.6).
First, we present the existence, uniqueness, and characterization of the robust control
throughout optimal control tools. Afterward, a discrete scheme for the KS equation
(1.6) as well as the procedure to the robust internal control problem is presented.
We devote Sect. 3 to prove the robust Stackelberg strategy for the KS equation, see
Theorem 2. That means, we prove the exact controllability to the trajectories for the
coupled KS system that arises as characterization of the robust control problem. In the
theoretical framework, the main tools will be new Carleman estimates and fixed point
arguments for coupled fourth-order parabolic systems. Meanwhile, the implemented
numerical scheme in the previous section will be adapted and complemented for
coupled and discretized KS equations.

2 The robust control problem

The main objective in robust interior control is to determine the best control function
v belonging to L2(0, T ; L2(O)) in the presence of the disturbance ψ ∈ L2(Q) which
maximally spoils the control. In this section, we prove the existence, uniqueness and
characterization of a solution to the robust internal control problem established in
Problem 1 and Theorem 1. In what follows, we assume that the leader h has made a
choice, so we keep it fixed along this section.

2.1 Existence of the saddle point

This section is devoted to solve theminimization problemconcerning the robust control
problem. First, we prove the existence of a saddle point for the functional defined in
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(1.7). The proof of existence of a saddle point (v̄, ψ̄) (Problem 1) is based on the
following proposition. Its proof can be found in [15].

Proposition 1 Let J be a functional defined on X × Y , where X ⊂ X and Y ⊂ Y
are nonempty, closed bounded convex sets, and X and Y are reflexive Banach spaces.
If J satisfies

(a) ∀v ∈ X , ψ �−→ J (v, ψ) is concave and upper semi-continuous.
(b) ∀ψ ∈ Y, v �−→ J (v, ψ) is convex and lower semi-continuous.

Then, the functional J possesses at least one saddle point (v̄, ψ̄) on X × Y and

J (v̄, ψ̄) = min
v∈X

sup
ψ∈Y

J (v, ψ) = max
ψ∈Y

inf
v∈X

J (v, ψ). (2.1)

Moreover, if J is strictly concave with respect to ψ and strictly convex with respect to
v, (v̄, ψ̄) is unique.

In order to guarantee the existence of the saddle point (v̄, ψ̄), we prove the following
lemma.

Lemma 1 Let R > 0 be the constant given in Lemma 9. Let u0 ∈ H2
0 (0, 1) and

h ∈ L2(0, T ; L2(ω)) be fixed such that

‖u0‖H2
0 (0,1) + ‖h‖L2(0,T ;L2(ω)) ≤ R

2
.

Then, there exist positive constants γ0 and �0 such that for any γ ≥ γ0 and � ≥ �0 we
have

(a) ∀v ∈ Vad , ψ �−→ Jr (v, ψ) is concave and upper semicontinuous.
(b) ∀ψ ∈ �ad , v �−→ Jr (v, ψ) is convex and lower semicontinuous.

Proof First, since the norm is continuous, we only need to check the continuity
of the first term in Jr with respect to v,ψ . To do this, let ui = ui (vi , ψ i ) ∈
C([0, T ]; H2

0 (0, 1)) ∩ L2(0, T ; H4(0, 1)), i = 1, 2 be the solutions of equation
(1.6) associated with the corresponding external sources in L2(Q) (see Lemma 9
and Remark 9). Let δu = u1 − u2, δv = v1 − v2 and δψ = ψ1 − ψ2. Using (1.6), it
is easy to verify that δu satisfies the following system
⎧⎪⎨
⎪⎩

(δu)t + (δu)xxxx + (δu)xx + u1(δu)x + u2x (δu) = δv + δψ in (0, 1) × (0, T ) =: Q,

(δu)(0, t) = (δu)(1, t) = (δu)x (0, t) = (δu)x (1, t) = 0 on (0, T ),

(δu)(·, 0) = 0 in (0, 1).

(2.2)

Since u1, u2x ∈ L∞(Q), Lemmas 7 and 9 allow us to guarantee the existence of a
positive constant C that depends only on Q and R such that

‖δu‖2L2(0,T ;H2(0,1)) ≤ C
(
‖δv‖2L2(Q)

+ ‖δψ‖2L2(Q)

)
.

This completes the proof of the continuity of Jr with respect to (v, ψ).
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(a) Since the norm is lower semicontinuous, the map ψ �−→ Jr (v, ψ) is upper semi-
continuous. In order to prove the concavity, it is enough to show that

g(ρ) = Jr (v, ψ + ρψ ′)

is concave with respect to ρ near ρ = 0, that is, g′′(0) ≤ 0. Let u′ = u′(0, ψ ′) =
Du
Dψ

· ψ ′. Then, u′ is the solution of

⎧⎪⎨
⎪⎩
u′
t + u′

xxxx + u′
xx + uu′

x + +uxu′ = ψ ′ in Q,

u′(0, t) = u′(1, t) = u′
x (0, t) = u′

x (1, t) = 0 on (0, T ),

u′(·, 0) = 0 in (0, 1).

(2.3)

By computing, we have

g′(ρ) = DJr
Dψ

(0, ψ + ρψ ′) · ψ ′ =
T∫

0

(u − ud , u
′)L2(Od )dt

−γ 2

T∫
0

(ψ + ρψ ′, ψ ′)L2(0,1)dt . (2.4)

Similarly, let ψ̂ ′ ∈ L2(Q) be another disturbance direction, and consider u′′ =
D2u
Dψ2 · ψ ′ · ψ̂ ′, which solves the following system:

⎧⎪⎨
⎪⎩
u′′
t + u′′

xxxx + u′′
xx + uu′′

x + uxu′′ = −w2w1
x − w1w2

x in Q,

u′′(0, t) = u′′(1, t) = u′′
x (0, t) = u′′

x (1, t) = 0 on (0, T ),

u′′(·, 0) = 0 in (0, 1),

(2.5)

where w1 = u′ = Du
Dψ

· ψ ′ and w2 = u′ = Du
Dψ

· ψ̂ ′ are solutions of (2.3). By

taking ψ̂ ′ = ψ ′ and thus w1 = w2, we really have on the right-hand side of the
equation (2.5) the term −2u′u′

x .
On the other hand, from (2.4) we get

g′′(ρ) =
∫∫

Od×(0,T )

(u − ud)u
′′ dxdt +

∫∫
Od×(0,T )

|u′|2 dxdt − γ 2
∫∫
Q

|ψ ′|2dxdt .

(2.6)

Now, we will see that for γ sufficiently large, the last term in the above iden-
tity dominates in the expression (2.6), and therefore, g′′(0) ≤ 0, for (v, ψ) ∈
Vad × �ad . We begin by estimating the second term. Thanks to the assumptions
that u ∈ Z (see (1.9) and Lemma 9), Lemmas 7 and 9 can be applied to the
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linearized system (2.3). Thus, for any ψ ′ ∈ �ad , there exists a unique solution
u′ ∈ C([0, T ]; L2(0, 1)) ∩ L2(0, T ; H2(0, 1)) ≡ W (0, T ) to (2.3) such that

∫∫
Od×(0,T )

|u′|2 dxdt ≤ C1

∫∫
Q

|ψ ′|2dxdt, (2.7)

where C1 is a positive constant that depends only on Q and R.
To estimate the first term, we need an upper bound for u′′. Using the fact that
u′ ∈ W (0, T ), it follows that |u′|2 ∈ L1(0, T ;W 0,1(0, 1)). Then, we have that
(|u′|2)x belongs to L1(0, T ;W−1,1). Applying Lemma 6 with y = u′′, y = u
and f = (|u′|2)x , the linearized system (2.5) has a unique solution u′′ ∈
C([0, T ]; H−2(0, 1)) ∩ L2(0, T ; L2(0, 1)). In addition, from Definition 1 we
obtain

∫∫
Q

(u − ud)u
′′ dxdt = 〈−2u′u′

x , w〉L1(0,T ;W−1,1),L∞(0,T ;W 1,∞(0,1)), (2.8)

where w ∈ Z is the solution of (A.4).
Thus, applying Lemma 7 to w and from the compact injection H2

0 (0, 1) ↪→
W 1,∞(0, 1) , there exists a positive constant C2 that only depend on Q such that

∫∫
Q

(u − ud)u
′′ dxdt ≤ C2

(‖u‖L2(Q) + ‖ud‖L2(Q)

) ‖u′u′
x‖L1(0,T ;W−1,1(0,1))

≤ C2

2

(‖u‖L2(Q) + ‖ud‖L2(Q)

) ‖u′‖2L2(Q)
. (2.9)

From inequalities (2.7), (2.9) and Lemma 9, there exists a constant C3 that just
depends on Q, R and ‖ud‖L2(Q) such

∫∫
Q

(u − ud)u
′′ dxdt ≤ C3‖ψ ′‖2L2(Q)

. (2.10)

Putting together (2.4), (2.7), and (2.10) yields

g′′(ρ) ≤
(
C1 + C3 − γ 2

)
‖ψ ′‖2L2(Q)

, ∀ψ ′ ∈ �ad , ψ ′ �= 0.

Therefore, under the assumption that γ 2 ≥ γ 2
0 := C1 + C3, we have g′′(ρ) ≤ 0

for all ρ ∈ R. Thus, the function g is concave and the strictly concavity of ψ �−→
Jr (v, ψ) follows for γ large enough.

(b) Under the same scheme of the above proof, in order to show convexity of the map
v �−→ Jr (v, ψ), it is sufficient to prove that

g(ρ) = Jr (v + ρv′, ψ)
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is convex with respect to ρ near ρ = 0, that is, g′′(0) > 0. Arguing as above, we
obtain

g′′(ρ) =
∫∫

Od×(0,T )

(u − ud)u
′′ dxdt +

∫∫
Od×(0,T )

|u′|2 dxdt + �2
∫∫

O×(0,T )

|v′|2dxdt,

(2.11)

where we have denoted u′ = u′(v′, 0) = Du
Dv

· v′ and u′′ = D2u
Dv2

· v′ · v̂′. Observe
that estimates for u′ and u′′ can be obtained in the same way of Condition a) by
replacing ψ ′ by v′ in (2.3) and (2.5). Thus, it follows that

g′′(ρ) ≥
(
�2 − C1 − C3

)
‖v′‖2L2(0,T ;L2(O))

, ∀v′ ∈ Vad , v′ �= 0.

Therefore, under the assumption that �2 ≥ �20 := C1 +C3 we have g′′(ρ) ≥ 0 for
all ρ ∈ R. Thus, the function g is convex and the strictly convex of v �−→ Jr (v, ψ)

follows for � large enough.

This complete the proof of Lemma 1. ��
Next, we carry out the proof of the main result of this section, i.e., Theorem 1.

Proof It is a direct consequence of Lemma 1 and Proposition 1. Therefore, there exists
a pair (v̄, ψ̄) onVad×�ad and an associated solution to (1.6) u = u(h, ψ̄, v̄) satisfying
(2.1). ��
A useful characterization of saddle point, in the case where Jr is a differentiable
function, is the following proposition (see [22] and references therein).

Proposition 2 In addition to the hypotheses of Proposition 1, assume

(c) ∀v ∈ X , ψ �−→ J (v, ψ) is Gateaux differentiable.
(d) ∀ψ ∈ Y , v �−→ J (v, ψ) is Gateaux differentiable.

Then, (v̄, ψ̄) ∈ X × Y is a saddle point of J if and only if

⎧⎨
⎩
〈
∂ J
∂v

(v̄, ψ̄), v − v̄
〉 ≥ 0, ∀v ∈ X ,

〈
∂ J
∂ψ

(v̄, ψ̄), ψ − ψ̄
〉
≤ 0, ∀ψ ∈ Y .

(2.12)

Observe that Proposition 2 is also applicable to our case, so we have the characteriza-
tion (2.12) for the saddle point in Theorem 1. It will be studied in the next section.

2.2 Characterization of the robust control

In this section, we will identify the gradient of the cost functional Jr (see (1.7)) with
respect to the control v and the disturbance ψ , which turn out to be useful for the
numerical framework for determining the robust control solution, and whose analysis
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is given later on. As proved in the above section, the existence of a saddle point (v̄, ψ̄)

of the functional Jr implies (2.12). As consequence, for the functional Jr follows that
for any ψ ∈ L2(Q) and v ∈ L2(0, T ; L2(O))

DJr
Dψ

(v̄, ψ̄) = 0,
DJr
Dv

(v̄, ψ̄) = 0.

Following the arguments by [6, 22], we can deduce

DJr
Dv

(v̄, ψ̄) = (�2v̄ − z)1O and
DJr
Dψ

(v̄, ψ̄) = −γ 2ψ̄ − z,

where z is the solution to the problem

⎧⎪⎨
⎪⎩

−zt + zxxxx + zxx − uzx = (u − ud)1Od in Q,

z(0, t) = z(1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

z(·, T ) = 0 in (0, 1).

In summary, the robust internal control problem is characterized by the following
lemma.

Lemma 2 Let h ∈ L2(0, T ; L2(ω)) and u0 ∈ H2
0 (0, L) be given. Suppose that (v̄, ψ̄)

is the solution to the robust control problem established in Theorem 1. Then,

ψ̄ = 1

γ 2 z and v̄ = − 1

�2
z1O,

where z is the second component of (u, z) solution to the following coupled system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxx + uxx + uux = h1ω + (−�−21O + γ −2)z in Q,

−zt + zxxxx + zxx − uzx = (u − ud)1Od in Q,

u(0, t) = u(1, t) = z(0, t) = z(1, t) = 0 on (0, T ),

ux (0, t) = ux (1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

u(·, 0) = u0(·), z(·, T ) = 0 in (0, 1).

(2.13)

2.3 Numerical method

Finite element solutions for the KS equation are not common because the primal
variational formulationof fourth-order operators requiresfinite element basis functions
which are piecewise smooth and globally at least C1-continuous, although the KS
equation has been studied numerically by several schemes such as local discontinuous
Galerkin methods [40], finite elements [2, 11], variable mesh finite differencemethods
[30], B-spline finite difference-collocation method [26], the inverse scattering method
[13], a higher-order finite element approach [4], finite difference [1, 29, 31, 35], spectral
method [5]. In this paper, a new numeric solution for the KS equation is obtained by
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introducing a θ -scheme/Adams–Bashforth algorithm for the time discretization and
P1-typeLagrangepolynomials for the spatial approximation.This setting simplifies the
treatment of the nonlinearity in a semi-implicit form and also decomposes the fourth-
order equation to a coupled system of two second-order equations, which allows to
use C0-basis functions instead of C0-basis functions.

In this section, we develop a finite element method for the solution of the nonlinear
robust control problem associated with the KS equation (1.6). As mentioned, this
problem is equivalent to find a saddle point for the functional Jr , which is characterized
by the coupled system (2.13). In order to obtain better illustrations of our results, we
consider a symmetric domain (−L, L) (L > 0) instead of (0, 1). Let us first consider
the KS equation

⎧⎪⎨
⎪⎩
ut + uxxxx + uxx + uux = f in (−L, L) × (0, T ),

u(−L, t) = u(L, t) = ux (−L, t) = ux (L, t) = 0 in (0, T ),

u(·, 0) = u0(·) in (−L, L),

(2.14)

By defining a new variable w as w = uxx , the above problem may be considered in a
coupled manner as:

uxx = w, (2.15)

ut + wxx + w + uux = f , (2.16)

and subject to the following initial and boundary conditions:

u(x, 0) = u0(x), −L ≤ x ≤ L, (2.17)

u(−L, t) = u(L, t) = ux (−L, t) = ux (L, t) = 0, t > 0, (2.18)

uxx (−L, t) = w(−L, t) = w1(t), uxx (L, t) = w(L, t) = w2(t), t > 0,

(2.19)

where u0, w1 andw2 are given smooth functions. Thanks to the initial condition (2.17),
the values of all successive partial derivatives of u can be determined at t = 0. Thus,
the value of w is also known at t = 0.

To obtain the numerical solution of the problem (2.15)–(2.16) subject to (2.17)–
(2.19), the time domain is split into NT intervals, i.e., 0 < t1 < t2 < · · · tNT =
T , where the steps are of equal length t . Besides, we will use P1-type finite
elements for the spatial discretization (see for instance [3,Section 6.2]) and a θ -
scheme/Adams–Bashforth (TAB2) for the time advancing. More precisely, by letting
un(x) = u(x, nt) and wn(x) = w(x, nt) for some small t . TAB2 approxima-
tions to (2.15)–(2.16) are given by

un+1 − un

t
+ θA(wn+1) + (1 − θ)A(wn) − 3

2
N (un) + 1

2
N (un−1) = f n+1,

(2.20)

wn+1 − un+1
xx = 0, (2.21)
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whereAw = wxx +w corresponds to the linear part andN (u) = uux is the nonlinear
term. For the spatial discretization, we consider the discrete space

Vh = {u ∈ C([−L, L]) : u|[x j ,x j+1] ∈ P1 for all 0 ≤ j ≤ N }

and its subspace

V0h = {u ∈ Vh : u(−L) = u(L) = 0}.

Thus, after integrating by parts, the discrete variational problem of the internal approx-
imation becomes: to find (un+1

h , wn+1
h ) ∈ V0h × V0h such that

(un+1
h , u1) + tθ((wn+1

h , u1) − (∂xw
n+1
h , ∂xu1)) = F(unh, u

n−1
h , u1), ∀u1 ∈ V0h,

(2.22)

(wn+1
h , u2) + (∂xu

n+1
h , ∂xu2) = 0, ∀u2 ∈ V0h,

(2.23)

where

F(unh, u
n−1
h , u1) = t(θ − 1)((wn

h , u1) − (∂xw
n
h , ∂xu1)) + 3

2
t(N (unh), u1)

−1

2
t(N (un−1

h , u1) + t( f n+1, u1) (2.24)

and (·, ·) denotes the inner product of L2((−L, L)).
First, we test numerically the accuracy of our method for the resolution of the

nonlinear KS equation (2.14) by taking the following function, the expression: (see
Fig. 1)

u(x, t) = (t + 1) sin2
(πx

30

)
, x ∈ (−30, 30),

as the solution of (2.14), where the right-hand side term is

f (x, t) = −π2(−225 + π2)(1 + t) cos(πx
15 )

101250

+ 1

30

(
30 + π(1 + t)2 sin2

(πx

15

))
sin2

(πx

30

)
.

To see the order of the accuracy between our numerical approximation and the exact
solution given above, we let t decrease from 10−1 to 10−6 for large N = 200, and
let N increase from 25 to 100 for small t = 10−6. The results are given in Table 1.
The mathematical study of stability, convergence, and accuracy for the above method
will be developed in a forthcoming paper.

Now, in order to approximate the solution of the robust control problem, Problem 1,
we use as starting point the above discretization schemes aswell as the characterization
given by Lemma 2. Secondly, based in the numerical algorithm proposed in [6, 38] for

123



Mathematics of Control, Signals, and Systems

Fig. 1 Graph of numerical solution for N = 200 (spatial nodes) with temporal step t = 10−3 and
T = 100. The numerical approximation by the θ /Adams–Bashforth method with θ = 3

4 and P1 Lagrange
finite elements

Table 1 Errors in L∞ and L2

norms at T = 1s using the
θ -scheme/Adams–Bashforth
method with P1-type Lagrange
polynomials (2.22)–(2.24) for
the KS equation (2.14)

t N L∞-error L2-error

1e−01 200 1.32e−02 5.54e−06

1e−02 1.13e−03 3.46e−08

1e−03 8.79e−05 2.71e−10

1e−04 5.55e−05 5.66e−11

1e−05 5.46e−05 6.58e−11

1e−06 5.45e−05 6.70e−11

1e−06 25 3.31e−03 1.86e−06

50 8.83e−04 6.58e−08

100 2.19e−04 2.13e−09

the Navier–Stokes equations, we propose a similar algorithm for the KS system. Our
main difference relies in the form of constructing the ascent and descent optimal step
size, and whose basis is inspired by the preconditioned nonlinear gradient conjugate
method exposed in [28]. The algorithm reads as follows.

Remark 2 To find appropriate step size αk and βk , we should be able to minimize the
following nonlinear functions:

fk(α) = Jr
(
vk − α

DJr
Dv

(vk, ψk), ψk
)

and

gk(β) = −Jr
(
vk, ψk + β

DJr
Dψ

(vk, ψk)
)
.

Observe that we have that:

f ′
k(α) = lim

ε→0

fk(α + ε) − fk(α)

ε

= lim
ε→0

Jr (vk − α DJr
Dv

(vk, ψk) − ε DJr
Dv

(vk, ψk), ψk) − Jr (vk − α DJr
Dv

(vk, ψk), ψk)

ε

=
〈
DJr
Dv

(vk − α
DJr
Dv

(vk, ψk), ψk),−DJr
Dv

(vk, ψk)

〉
L2(Q)

.
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Algorithm 1: Robust control algorithm
Input: Initialize k = 0 and (v0, ψ0) = (0, 0) on t ∈ [0, T ], where k is the iteration index and

(vk , ψk ) is the numerical approximation of the control and the disturbance during the kth
iteration of the algorithm.

1 Determine the state uk+1 on [0, T ] from the KS equation with initial datum u0 and the forcing

(vk1O, ψk ), where O ⊂ (−L, L).
2 Determine the adjoint state zk+1 on [0, T ] from the adjoint equation based on the state uk+1.
3 Determine the local expression of the gradients

DJr
Dv

(vk , ψk ) and
DJr
Dψ

(vk , ψk ).

4 Determine the updated disturbance ψk+1 using

ψk+1 = ψk + αk
DJr
Dψ

(vk , ψk ),

where αk ∈ (0, 1) is determined by an iterative procedure described in Remark 2.
5 Determine the updated control vk+1 using

vk+1 = vk − βk DJr
Dv

(vk , ψk ),

where βk ∈ (0, 1) is determined by an iterative procedure described in Remark 2.
6 Increment index k = k + 1. Repeat from step 3 until convergence.

Since we are able to compute the exact derivate of function fk(α), we will find it’s
minimum by finding the root of f ′

k(α) using the following algorithm.
An analogous procedure is realized for obtaining βk .

The criterion for the termination of the algorithm is given by

∥∥∥DJr
Dψ

(vk, ψk)

∥∥∥
L2(Q)

+
∥∥∥DJr
Dvk

(vk, ψk)

∥∥∥
L2(Q)

< tol,

which is analogous to the presented in [38].
Figures 2, 3, 4, 5, 6 and 7 display numerical results on the robust internal control

problem by considering different parameters � and γ as well as for some functions ud .

In all experiments, tol = 10−6, the initial datum is u0(x) = sin2
(

πx
30

)
, x ∈ (−30, 30).

3 Controllability

In the previous section, the robust control problem was characterized by a coupled
system which needs to be solved. In order to establish a Stackelberg strategy for the
case in which the leader control leads the state to the trajectory in a finite time, we
must find a function h ∈ L2(0, T ; L2(ω)) such that the corresponding u solution to
(1.6) satisfies u(T ) = u(T ), with u solution to (1.8). To be precise, to prove the exact
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Algorithm 2: Root finding algorithm
1 (Step 0) choose α0 = 0, and define:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r0 = 0, r1 = 1

a = 0, b = 1

α1 = α0 − (r1 − r0)P( f ′
k (α0))

p0 = −P( f ′
k (α0)) f

′
k (α0)

p1 = −P( f ′
k (α0)) f

′
k (α1)

where

P(x) =
{
x/| f ′

k (0)| if f ′
k (0) > 1

x if f ′
k (0) ≤ 1

For n ≥ 1, repeat the followings steps until

| f ′
k (αn)| ≤ tol

(Step 1) If p0 p1 < 0 follows the next steps, define:

λ =

⎧⎪⎨
⎪⎩

−p0−p0+p1
−p0−p0+p1

∈ (0.2, 0.8)

0.8 −p0−p0+p1
> 0.8

0.2 −p0−p0+p1
< 0.2

and set: {
rn+1 = bλ + a(1 − λ)

xn+1 = αn − (rn+1 − rn)P( f ′
k (αn))

if −p0P( f ′(xn+1)) < 0, set: {
p1 = −P( f ′

k (α0)) f
′
k (αn+1)

b = rn+1

otherwise set: {
p0 = −P( f ′

k (α0)) f
′
k (αn+1)

a = rn+1

2 (Step 2) If p0 p1 ≥ 0, set:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rn+1 = 2rn
p0 = p1
αn+1 = αn − (rn+1 − rn)P( f ′

k (αn))

b = rn+1

controllability to the trajectories, we consider two relevant control systems, namely
the linearized system of (2.13) around u which is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxx + uxx + uux + uxu = f1 + h1ω + (−�−21O + γ −2)z in Q,

−zt + zxxxx + zxx − (u + u)zx = f2 + (u − ud)1Od in Q,

u(0, t) = u(1, t) = z(0, t) = z(1, t) = 0 on (0, T ),

ux (0, t) = ux (1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

u(·, 0) = u0(·), z(·, T ) = 0 in (0, 1).

(3.1)
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Fig. 2 Disturbance signal ψ (left) and control function v (right) on the spatial domain (−30, 30). T = 1s,
N = 50, t = 2 × 10−2 and � = 40, γ = 40
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Fig. 3 Function ud (x, t) = sin2( πx
30 )+10−1t(cos( πx

30 )+1) (left) and state function u(x, t) (right). T = 1s,

N = 50, t = 2 × 10−2 and � = 40, γ = 40
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Fig. 4 Disturbance signal ψ (left) in the interval (−30, 30) and control function v (right) with support in
O = (−10, 10). T = 5s, N = 50, t = 2 × 10−2 and � = 4, γ = 400

and the adjoint system associated with (3.1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ϕt + ϕxxxx + ϕxx − uϕx = g1 + θ1Od in Q,

θt + θxxxx + θxx + (uθ)x = g2 − �−2ϕ1O + γ −2ϕ in Q,

ϕ(0, t) = ϕ(1, t) = θ(0, t) = θ(1, t) = 0 on (0, T ),

ϕx (0, t) = ϕx (1, t) = θx (0, t) = θx (1, t) = 0 on (0, T ),

ϕ(·, T ) = ϕT (·), θ(·, 0) = 0 in (0, 1).

(3.2)
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Fig. 5 Function ud (x, t) = exp(−x2) + sin2( πx
30 ) (left) and state function u(x, t) (right). T = 5s, N =

50,t = 2 × 10−2 and � = 4, γ = 400
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Fig. 6 Disturbance signal ψ (left) in the interval (−30, 30) and control v (right) with support in O =
(−10, 10). T = 1s, N = 50, t = 2 × 10−2 and � = γ = 10
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Fig. 7 Function ud (x, t) = (−t3 + t2) + sin2( πx
30 ) (left) and state function u(x, t) (right). T = 1s, N =

50,t = 2 × 10−2 and � = γ = 10

where f1, f2, g1, g2 and u0, ϕT are in appropriate spaces.
Our strategy is as follows:

(i) Establish first a global Carleman inequality for the system (3.2). Those inequality
allows us to prove a null controllability result for the linearized system (3.1) with
right-hand side satisfying suitable decreasing properties near t = T .

(ii) Afterward, to establish the local exact controllability to the trajectories for the KS
system. Here, fixed point arguments will be used.
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3.1 Carleman inequalities

We first define some weight functions which will be useful in the sequel. Let ω and
ω0 be nonempty subsets of (0, 1) such that ω0 ⊂⊂ ω ∩ Od and η ∈ C4([0, 1]) such
that

|∇η| > 0 in [0, 1] \ ω0, η > 0 in (0, 1) and η(0) = η(1) = 0.

The existence of such a function is proved in [16]. For some positive real number λ,
we consider the weight functions:

α(x, t) = e7λ‖η‖∞ − eλ(2‖η‖∞+η(x))

(t(T − t))2/5
, ξ(x, t) = eλ(2‖η‖∞+η(x))

(t(T − t))2/5
,

α̂(t) = max
x∈[0,1] α(x, t), ξ̂ (t) = max

x∈[0,1] ξ(x, t),

ᾰ(t) = min
x∈[0,1] α(x, t), ξ̆ (t) = min

x∈[0,1] ξ(x, t).

(3.3)

Henceforth, the constants a0 and m0 are fixed and satisfy

5

4
≤ a0 < a0 + 1 < m0 < 2a0, m0 < 2 + a0. (3.4)

Moreover, we will use the following notation for the weighted energy:

I0(ρ, u) =
T∫

0

1∫
0

ρ(s−1ξ−1(|ut |2 + |uxxxx |2)dxdt + I1(ρ, u),

I1(ρ, u) =
T∫

0

1∫
0

ρ(sλ2ξ |uxxx |2 + s3λ4ξ3|uxx |2 + s5λ6ξ5|ux |2 + s7λ8ξ7|u|2)dxdt,

and we also recall the space

Z := C([0, T ]; H2
0 (0, 1)) ∩ L2(0, T ; H4(0, 1)) ∩ L∞(0, T ;W 1,∞(0, 1)).

Our Carleman estimate is given in the following proposition.

Proposition 3 Let u ∈ Z and assume that ω ∩ Od �= ∅ and that � and γ are large
enough. Then, there exist a constant λ such that for any λ ≥ λ exist two constants
s(λ) > 0 and C = C(λ) > 0 depending only on ω such that for any g1, g2 ∈ L2(Q)

and any ϕT ∈ L2((0, 1)), the solution of (3.1) satisfies
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I1(e
−2sα−2a0sα̂, θ) + I0(e

−2sm0α, ϕ)

≤ C

(
s15λ16

∫∫
ω×(0,T )

e−2sᾰ−2a0sα̂ (̂ξ )29|ϕ|2dxdt

+ s7λ8
∫∫
Q

e−2sα̂−2a0sα̂ (̂ξ )7|g1|2dxdt + s7λ8
∫∫
Q

e−2a0sα̂|g2|2dxdt
)

,

(3.5)

for any s ≥ s.

Before giving the proof of Proposition 3, we recall some technical results. Let us
introduce the system

⎧⎪⎨
⎪⎩
ut + uxxxx + uxx + uux + uxu = f in Q,

u(0, t) = u(1, t) = ux (0, t) = ux (1, t) = 0 on (0, T ),

u(·, 0) = u0(·) in (0, 1),

(3.6)

where f ∈ L2(Q) and u ∈ Z .

Lemma 3 Assume f ∈ L2(Q) and ω ⊂ (0, 1). Then, there exist positive constants
C(ω), s1 and λ1 such that

I1(e
−2sα, u) ≤ I0(e

−2sα, u)

≤ C
( T∫
0

1∫
0

e−2sα| f |2dxdt + s7λ8
T∫

0

∫
ω

e−2sαξ7|u|2dxdt
)
, (3.7)

for every s ≥ s1, λ ≥ λ1, and u solution to (3.6) with u ∈ Z .

Remark 3 Carleman inequality of Lemma 3 was proved in [9] with u = 0. However,
thanks to the Carleman weight functions and the fact that u ∈ Z its extension to (3.6)
is direct. Besides, in [9] slightly different weight functions are used to prove Lemma 3.
Nevertheless, the inequality remains valid since the key point of the proof is thatα goes
to +∞ when t tends to 0 and T . In addition, there exists another Carleman estimate
for the system (3.6) (with u = 0) [42]. To our purpose, it is convenient to use [9]
instead of [42].

Remark 4 A direct consequence of the weight functions (3.3) shows that the first term
in the right-hand side of (3.7) can be upper bounded by the term ‖e−2sᾰ+sα̂ f ‖2

L2(Q)
.

Therefore, (3.7) is transformed in

I1(e
−2sα, u) ≤ I0(e

−2sα, u)

≤ C

⎛
⎝

T∫
0

1∫
0

e−4sᾰ+2sα̂| f |2dxdt + s7λ8
T∫

0

∫
ω

e−2sαξ7|u|2dxdt
⎞
⎠ , (3.8)
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for every s ≥ s1, λ ≥ λ1, and u solution to (3.6).

Another result holds from the relation between the weight function α̂ and ᾰ. The
interested reader can see [32] for more details.

Lemma 4 For any ε > 0, any M1, M2 ∈ R, there exists λ0 > 0 and C =
C(ε, M1, M2) > 0 such that

esα̂ ≤ CsM1λM2(ξ̆ )M1es(1+ε)ᾰ, (3.9)

for every λ > λ0.

Remark 5 In relation to Lemma 4, it was proved in [32] for ξ̂ instead of ξ̆ ; nevertheless,
it is easy to verify that the same arguments hold.

Now, in order to give the proof of Proposition 3, we adapt the structure made by
Montoya and deTeresa in [32].More precisely, wemust firstmake aCarleman estimate
for θ with appropriate weight functions. Afterward, another Carleman inequality for
ϕ will be established. The weight functions should be such that all terms respect to θ

in the right-hand side can be absorbed by the left-hand side. Finally, to estimate local
terms of θ , we will use the geometric condition Od ∩ ω0 �= ∅.
Proof Carleman estimate for θ . Let define θ∗ := ρ∗θ , where ρ∗ = ρ∗(t) = e−a0sα̂

and a0 fixed satisfying (3.4). From (3.2), θ∗ is the solution of the following system

⎧⎨
⎩

θ∗
t + θ∗

xxxx + θ∗
xx + (uθ∗)x = ρ∗g2 + ρ∗(−�−2ϕ1O + γ −2ϕ) + ρ∗

t θ in Q,

θ∗(0, t) = θ∗(1, t) = θ∗
x (0, t) = θ∗

x (1, t) = 0 on (0, T ),

θ∗(·, 0) = 0 in (0, 1).

Now, we decompose θ∗ as follows:

θ∗ = θ̂ + θ̃ , (3.10)

where θ̂ and θ̃ solve, respectively,

⎧⎨
⎩

θ̃t + θ̃xxxx + θ̃xx + (uθ̃ )x = ρ∗g2 + ρ∗(−�−2ϕ1O + γ −2ϕ) in Q,

θ̃ (0, t) = θ̃ (1, t) = θ̃x (0, t) = θ̃x (1, t) = 0 on (0, T ),

θ̃ (·, 0) = 0 in (0, 1).
(3.11)

and
⎧⎨
⎩

θ̂t + θ̂xxxx + θ̂xx + (uθ̂ )x = ρ∗
t θ in Q,

θ̂ (0, t) = θ̂ (1, t) = θ̂x (0, t) = θ̂x (1, t) = 0 on (0, T ),

θ̂ (·, 0) = 0 in (0, 1).
(3.12)

For system (3.11), we will use Lemma 7 (see “Appendix”) with the higher regularity;
meanwhile, for the system (3.12) we will use some ideas of [32].
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Using Lemma 3 with f = ρ∗
t θ and u = θ̂ , there exists a positive constant C =

C(ω0) such that

I1(e
−2sα, θ̂) ≤ C

⎛
⎝

T∫
0

1∫
0

e−2sα|ρ∗
t θ |2dxdt + s7λ8

T∫
0

∫
ω0

e−2sαξ7|θ̂ |2dxdt
⎞
⎠ , (3.13)

for any λ1 := λ ≥ C and s ≥ s1.
Now, using the inequality a2

2 − b2 ≤ (a− b)2, for every a, b ∈ R, with a = θ∗ and
b = θ̃ , we get (recall that θ̂ = θ∗ − θ̃ ):

1

2
I1(e

−2sα, θ∗) − I1(e
−2sα, θ̃) ≤ I1(e

−2sα, θ̂). (3.14)

Since s7λ8ξ7e−2sα is upper bounded, it allows to estimate the terms involved in
I1(e−2sα, θ̃) using the regularity inequality (A.6) of Lemma 7. In fact, we have:

I1(e−2sα, θ̃) ≤ Cs,λ‖θ̃‖2
L2(0,T ;H4(0,1)∩H2

0 (0,1))

≤ Cs,λ‖ρ∗g2‖2L2(Q)
+ Cs,λ‖ρ∗(−�−2ϕ1O + γ −2ϕ)‖2

L2(Q)
,

(3.15)

where Cs,λ is a positive constant depending on s and λ, i.e., Cs,λ = Cs7λ8.
On the other hand, taking into account that |ρ∗

t | ≤ Csρ∗(ξ∗)7/2 for every s ≥ C ,
it follows that

T∫
0

1∫
0

e−2sα|ρ∗
t θ |2dxdt ≤ Cs2

T∫
0

1∫
0

e−2sα−2a0sα̂ (̂ξ )7|θ |2dxdt,

which can be absorbed by the first term in the left-hand side of (3.14), for every
λ ≥ 1, s ≥ C .

Now, to estimate the local term that appear in the right-hand side of (3.13), we use
the identity θ∗ = θ̂ + θ̃ (recall (3.10)). Thus, we have

s7λ8
T∫

0

∫
ω0

e−2sαξ7|θ̂ |2dxdt ≤ Cs7λ8
T∫

0

∫
ω0

e−2sαξ7(|θ̃ |2 + |θ∗|2)dxdt

≤ Cs7λ8
T∫

0

∫
ω0

e−2sαξ7|θ∗|2dxdt + Cs,λ‖ρ∗g2‖2L2(Q)

+ Cs,λ‖ρ∗(−�−2ϕ1O + γ −2ϕ)‖2L2(Q)
.

(3.16)
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Putting together (3.13)–(3.16), we have for the moment

I1(e−2sα−2a0sα̂, θ) ≤ Cs7λ8
T∫

0

∫
ω0

e−2sα−2a0sα̂ξ7|θ |2dxdt + Cs,λ‖ρ∗g2‖2L2(Q)

+Cs,λ‖ρ∗(−�−2ϕ1O + γ −2ϕ)‖2
L2(Q)

,

(3.17)

for every s ≥ C and λ1 := λ ≥ C .
Carleman estimate for ϕ. First, assuming that θ is given, we look at ϕ as the solution
of

⎧⎨
⎩

−ϕt + ϕxxxx + ϕxx − uϕx = g1 + θ1Od in Q,

ϕ(0, t) = ϕ(1, t) = ϕx (1, t) = ϕx (0, t) = 0 on (0, T ),

ϕ(·, T ) = ϕT (·) in (0, 1).
(3.18)

Applying Lemma 3 jointly with its Remark 4 for f = g1 + θ1Od and the weight
function m0α (instead of α), where a0 + 1 < m0 ≤ 2a0 and m0 ≤ 2 + a0, we obtain

I0(e−2m0sα, ϕ) ≤ C

⎛
⎜⎝

T∫
0

1∫
0

e−4m0sᾰ+2m0sα̂|g1|2dxdt +
T∫

0

∫
Od

e−4m0sᾰ+2m0sα̂|θ |2dxdt

+s7λ8
T∫

0

∫
ω0

e−2m0sαξ7|ϕ|2dxdt
⎞
⎠ ,

(3.19)

for any λ2 := λ ≥ C and s ≥ C .
By considering Lemma 4 with ε = m0−a0−1

m0+a0+1 , M1 = 7
2(m0+a0+1) and M2 =

4
(m0+a0+1) , the second term in the right-hand side of (3.19) can be estimated by

I1(e−2sα̂−2a0sα̂, θ), and therefore, it can be absorbed by the left-hand side of (3.17).
From (3.17) and (3.19), we have

I1(e−2sα−2a0sα̂, θ) + I0(e−2m0sα, ϕ)

≤ Cs7λ8
T∫
0

∫
ω0

e−2m0sαξ7|ϕ|2dxdt + Cs7λ8
T∫
0

∫
ω0

e−2sα−2a0sα̂ξ7|θ |2dxdt

+Cs,λ‖ρ∗g2‖2L2(Q)
+ C

T∫
0

L∫
0
e−4m0sᾰ+2m0sα̂|g1|2dxdt

+Cs,λ‖ρ∗(−�−2ϕ1O + γ −2ϕ)‖2
L2(Q)

,

(3.20)

for any λ3 := max{λ1, λ2} ≥ C, s ≥ C and Cs,λ depending on s, λ.

Taking � and γ large enough, i.e., �, γ > C1T 14/10eC2/T 4/5
, where C1, C2 are

positive constants depending on a0,m0, s, we can absorb the last term in the right-
hand side of (3.20) by the left-hand side.
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Finally, we should estimate the local term concerning θ in terms of ϕ. The idea is to
use the first equation of (3.18) and the hypothesis ω ∩ Od �= ∅, where ω0 ⊂ ω ⊂ Od .
Thus, we introduce an open set ω1 ⊂ ω such that ω0 ⊂ ω1 and a positive function
ζ ∈ C4

c (ω1) such that ζ ≡ 1 in ω0. Then, by using (3.18) and after several integration
by parts in time and space we get:

J = s7λ8
T∫

0

∫
ω0

e−2sα−2a0sα̂ξ7|θ |2dxdt

≤ Cs7λ8
T∫

0

∫
ω1

ζe−2sα−2a0sα̂ξ7(−ϕt + ϕxxxx + ϕxx − uϕx − g1)θdxdt

= C

(
s7λ8

T∫
0

∫
ω1

ζ(e−2sα−2a0sα̂ξ7)tϕθdxdt

+ s7λ8
T∫

0

∫
ω1

ζe−2sα−2a0sα̂ξ7(θt + θxxxx + θxx + (uθ)x )ϕdxdt

+ s7λ8
T∫

0

∫
ω1

(ζe−2sα−2a0sα̂ξ7)xxxxϕθdxdt

+ s7λ8
T∫

0

∫
ω1

(ζe−2sα−2a0sα̂ξ7)xxxϕθxdxdt

+ s7λ8
T∫

0

∫
ω1

(ζe−2sα−2a0sα̂ξ7)xx (ϕθxx + ϕθ)dxdt

+ s7λ8
T∫

0

∫
ω1

(ζe−2sα−2a0sα̂ξ7)x (ϕθxxx + ϕθx + uϕθ)dxdt

)
.

Now, using the estimates

|∂kx (ζe−2sα−2a0sα̂ξ7)| ≤ Cskλkξ8+
5k
2 e−2sα−2a0sα̂, k = 1, . . . , 4,

|∂t (e−2sα−2a0sα̂ξ7)| ≤ CTe−2sα−2a0sα̂ξ
21
2 ,

as well as the equation related to θ (see (3.2)) and the fact that u ∈ L∞(0, T ;W 1,∞
(0, 1)), the term J can be estimated as follows:
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J ≤ C

(
s7λ8

T∫
0

∫
ω1

ζe−2sα−2a0sα̂ξ
21
2 |ϕ||θ |dxdt

+ s7λ8
T∫

0

∫
ω1

ζe−2sα−2a0sα̂ξ7(g2 − �−2ϕ1O + γ −2ϕ)ϕdxdt

+ s11λ12
T∫

0

∫
ω1

e−2sα−2a0sα̂ξ18|ϕ||θ |dxdt

+ s10λ11
T∫

0

∫
ω1

e−2sα−2a0sα̂ξ
31
2 |ϕ||θx |dxdt

+ s9λ10
T∫

0

∫
ω1

e−2sα−2a0sα̂ξ13|ϕ||θxx |dxdt

+ s8λ9
T∫

0

∫
ω1

e−2sα−2a0sα̂ξ
21
2 |ϕ||θxxx |dxdt

)
,

with C depending on T and ‖u‖L∞(0,T ;W 1,∞(0,1)).
Taking into account that ω ∩ O = ∅ and applying Young’s inequality at each term

of the previous inequality, it is easy to deduce the following inequality:

J ≤ ε I1(e
−2sα−2a0sα̂, θ) + C(ε)s15λ16

T∫
0

∫
ω1

e−2sᾰ−2a0sα̂ (̂ξ )29|ϕ|2dxdt

+C(ε)s7λ8
T∫

0

1∫
0

e−2sα−2a0sα̂ξ7|g1|2dxdt + Cs7λ8
T∫

0

1∫
0

e−2a0sα̂|g2|2dxdt

+Cs14λ16
T∫

0

∫
ω1

e−4sα−2a0sα̂ξ14|ϕ|2dxdt, (3.21)

for every s ≥ C, ε > 0, � > 0 and γ large enough.
From the definition of ᾰ, α̂ and ξ̂ (see (3.3)), the second term in the right-hand side

can estimate both the last term in the right-hand side and the first term in the right-
hand side of (3.20). In fact, the first affirmation holds for every s ≥ 1; meanwhile,
the second one is a consequence of using Lemma 4 with ε = ((m0 − 1)/a0) − 1
and M1 = M2 = 4/a0. Therefore, from (3.20) and (3.21), we conclude the proof of
Proposition 3. ��
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3.2 Null controllability of the linearized system

In this section, we will prove the null controllability for the coupled system (3.1) with
a right-hand side with external sources decreasing exponentially to zero when t goes
to T . In other words, we would like to find h ∈ L2(0, T ; L2(ω)) such that the solution
of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxx + uxx + uux + uxu = f1 + h1ω + (−�−21O + γ −2)z in Q,

−zt + zxxxx + zxx − (u + u)zx = f2 + (u − ud)1Od in Q,

u(0, t) = u(1, t) = z(0, t) = z(1, t) = 0 on (0, T ),

ux (0, t) = ux (1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

u(·, 0) = u0(·), z(·, T ) = 0 in (0, 1).

(3.22)

satisfies

u(·, T ) = 0 in (0, 1), (3.23)

where the functions f1 and f2 are in appropriate weighted spaces. To this end, let us
first state a Carleman inequality with weight functions not vanishing in t = 0. Thus,
let �̃ ∈ C1([0, T ]) be a positive function in [0, T ) such that:

�̃(t) = T 2/4 ∀t ∈ [0, T /2] and �̃(t) = t(T − t) ∀t ∈ [T /2, T ].

Now, we introduce the following weight functions

β(x, t) = e7λ‖η‖∞ − eλ(2‖η‖∞+η(x))

�̃2/5(t)
, τ (x, t) = eλ(2‖η‖∞+η(x))

�̃2/5(t)
,

β̂(t) = max
x∈[0,1] β(x, t), τ̆ (t) = min

x∈[0,1] τ(x, t),

β̆(t) = min
x∈[0,1] β(x, t), τ̂ (t) = max

x∈[0,1] τ(x, t).

(3.24)

Lemma 5 Let s and λ like in Theorem 3. Then, there exists a constant C > 0 depend-
ing on s, λ, ω, T and ‖u‖L∞(0,T ;W 1,∞(0,1)), such that every solution (ϕ, θ) of (3.2)
satisfies

‖ϕ(·, 0)‖2L2(0,L)
+
∫∫
Q

e−2m0sβ̂ (τ̆ )7|ϕ|2dxdt

+
∫∫
Q

e−2(a0+1)sβ̂ (τ̆ )7|θ |2dxdt +
∫∫
Q

e−4a0sβ̂ (τ̆ )7|θ |2dxdt
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≤ C

(∫∫
Q

e−2a0sβ̂ (̂τ )7|g1|2dxdt +
∫∫
Q

e−2a0sβ̂ |g2|2dxdt

+
∫∫

ω×(0,T )

e−2sβ̆−2a0sβ̂ (̂τ )29|ϕ|2dxdt
)

. (3.25)

Proof The proof follows from classical energy estimates, and therefore, it is omitted.
The interested reader might see for instance [32,Lemma 3.4] for more details. ��

Now, we look for a solution of (3.22) in an appropriate weighted functional space.
Let us define the space E as follows:

E :=
{
(u, z, h) : ea0sβ̂ (̂τ )−7/2u ∈ L2(Q), ea0sβ̂ z ∈ L2(Q),

ea0sβ̂+sβ̆ (̂τ )−29/2h1ω ∈ L2(Q),

ea0sβ̂ (̂τ )−29/2u ∈ L2(0, T ; H2(0, 1)) ∩ L∞(0, T ; L2(0, 1)),
ea0sβ̂ (τ̆ )−c0 z ∈ L2(0, T ; H2(0, 1)) ∩ L∞(0, T ; L2(0, 1)), c0 ≥ 9

2 ,

em0sβ̂ (τ̆ )−7/2(ut + uxxxx + uxx + (uu)x − h1ω − (−�−21O+γ −2)z)∈ L2(Q),

e2a0sβ̂ (τ̆ )−7/2(−zt + zxxxx + zxx − (u + u)zx − (u − ud)1Od ) ∈ L2(Q)
}
.

Proposition 4 Assume the hypotheses of Lemma 5 and

u0 ∈ L2(0, 1), em0sβ̂ (τ̆ )−7/2 f1 ∈ L2(Q), e2a0sβ̂ (τ̆ )−7/2 f2 ∈ L2(Q), (3.26)∫∫
Od×(0,T )

ρ2(t)|ud |2dxdt < +∞, (3.27)

where ρ = ρ(t) is a positive function blowing up t = T . Then, there exists a control
h ∈ L2(0, T ; L2(ω)) such that the associated solution (u, z, h) to (3.22) satisfies
(u, z, h) ∈ E.

Proof Let us introduce the following constrained extremal problem:

inf

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

(∫∫
Q

e2a0sβ̂ (̂τ )−7|u|2dxdt +
∫∫
Q

e2a0sβ̂ |z|2dxdt

+
∫∫

ω×(0,T )

e2(a0sβ̂+sβ̆)(̂τ )−29|h|2dxdt
)

subject to h ∈ L2(Q), supp h ⊂ ω × (0, T ), and (3.22).

(3.28)
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Assume that this problem admits a unique solution (̂u, ẑ, ĥ). Then, from Lagrange’s
principle there exist dual variables (ϕ̂, θ̂ ) such that

û = e−2a0sβ̂ (̂τ )7(−ϕ̂t + ϕ̂xxxx + ϕ̂xx − uϕ̂x − θ̂1Od ) in Q,

ẑ = e−2a0sβ̂ (θ̂t + θ̂xxxx + θ̂xx + (uθ̂ )x − (−�−2χO + γ −2)ϕ̂) in Q,

ĥ = e−2(a0sβ̂+sβ̆)(̂τ )29ϕ̂ in Q,

û = ẑ = 0 on {0, 1} × (0, T ).

(3.29)

Let us now set the space

P0 : {(u, z) ∈ C4(Q) : ∂kx u(0, t) = ∂kx u(1, t) = ∂kx z(0, t) = ∂kx z(1, t) = 0,

k = 0, 1}.

as well as the bilinear form a(·, ·) over P0 × P0 defined by:

∫∫
Q

e−2a0sβ̂ (̂τ )7(−ϕ̂t + ϕ̂xxxx + ϕ̂xx − uϕ̂x − θ̂1Od )

×(−wt + wxxxx + wxx − uwx − z1Od ) dxdt

+
∫∫
Q

e−2a0sβ̂ (θ̂t + θ̂xxxx + θ̂xx + (uθ̂ )x

−(−�−2χO + γ −2)ϕ̂)(zt + zxxxx + zxx + (uz)x )

−
∫∫
Q

e−2a0sβ̂ (θ̂t + θ̂xxxx + θ̂xx + (uθ̂ )x

−(−�−2χO + γ −2)ϕ̂)(−�−2χO + γ −2)w dxdt

+
∫∫

ω×(0,T )

e−2(a0sβ̂+sβ̆)(̂τ )29ϕ̂w dxdt =: a((ϕ̂, θ̂ ), (w, z)),

for every (w, z) ∈ P0, and a linear form

〈G, (w, z)〉 :=
∫∫
Q

f1 · w dxdt +
∫∫
Q

f2 · z dxdt +
∫
�

u0(·) · w(·, 0) dx . (3.30)

Taking into account these definitions, one can see that if the functions û, ẑ and ĥ solve
(3.28), we must have for every (w, z) in P0

a((ϕ̂, θ̂ ), (w, z)) = 〈G, (w, z)〉. (3.31)
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Note that Carleman inequality (3.25) holds for all (w, z) ∈ P0. Consequently,

‖w(·, 0)‖2
L2(0,L)

+
∫∫
Q

e−2m0sβ̂ (τ̆ )7|w|2dxdt

+
∫∫
Q

e−2(a0+1)sβ̂ (τ̆ )7|z|2dxdt

+
∫∫
Q

e−4a0sβ̂ (τ̆ )7|z|2dxdt ≤ Ca((w, z), (w, z)),

(3.32)

for every (w, z) ∈ P0.
Therefore, it is easy to prove that a(·, ·) : P0 × P0 �−→ R is symmetric, definite

positive bilinear form on P0, so that, by defining P as the completion of P0 for the norm
induced by a(·, ·) it implies that a(·, ·) is well-defined, continuous and again definite
positive on P . In addition, from Carleman inequality (3.25), the hypothesis over the
functions f1 and f2 (see (3.26)), and (3.32), the linear form (w, z) �−→ 〈G, (w, z)〉
is well-defined and continuous on P . Indeed, thanks to the relation among a,m0, see
(3.4), for every (w, z) ∈ P we have

〈G, (w, z)〉 ≤ ‖e(a0+1)sβ̂ (τ̆ )−7/2 f1‖L2(Q)‖e−(a0+1)sβ̂ (τ̆ )7/2w‖L2(Q)

+ ‖em0sβ̂ (τ̆ )−7/2 f2‖L2(Q)‖e−m0sβ̂ (τ̆ )7/2z‖L2(Q)

+ ‖u0‖L2(0,1)‖w(0)‖L2(0,1)

≤ ‖em0sβ̂ (τ̆ )−7/2 f1‖L2(Q)‖e−(a0+1)sβ̂ (τ̆ )7/2w‖L2(Q)

+ ‖e2a0sβ̂ (τ̆ )−7/2 f2‖L2(Q)‖e−m0sβ̂ (τ̆ )7/2z‖L2(Q)

+ ‖u0‖L2(0,1)‖w(0)‖L2(0,1).

Using (3.32) and the density of P0 in P , we find

〈G, (w, z)〉 ≤ C
(
‖em0sβ̂ (τ̆ )−7/2 f1‖L2(Q) + ‖e2a0sβ̂ (τ̆ )−7/2 f2‖L2(Q) + ‖y0‖L2(0,1)

)
×‖(w, z)‖P .

Hence, from Lax–Milgram’s Lemma, there exists a unique (ϕ̂, θ̂ ) ∈ P satisfying

a((ϕ̂, θ̂ ), (w, z)) = 〈G, (w, z)〉, ∀(w, z) ∈ P. (3.33)

Let us set (̂u, ẑ, ĥ) like in (3.29) and remark that (̂u, ẑ, ĥ) verifies

a((ϕ̂, θ̂ ), (ϕ̂, θ̂ )) =
∫∫
Q

e2a0sβ̂ (̂τ )−7 |̂u|2dxdt

+
∫∫
Q

e2a0sβ̂ |̂z|2dxdt +
∫∫

ω×(0,T )

e2(a0sβ̂+sβ̆)(̂τ )−29 |̂h|2dxdt < +∞. (3.34)
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Let us prove that (̂u, ẑ) is the weak solution of the coupled system (3.22) for h = ĥ.
In fact, we introduce the (weak) solution (ũ, z̃) to the coupled system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũt + ũxxxx + ũxx + uũx + ux ũ = f1 + h1ω + (−�−21O + γ −2)z̃ in Q,

−z̃t + z̃xxxx + z̃xx − (ũ + u)z̃x = f2 + (ũ − ud)1Od in Q,

ũ(0, t) = ũ(1, t) = z̃(0, t) = z̃(1, t) = 0 on (0, T ),

ũx (0, t) = ũx (1, t) = z̃x (0, t) = z̃x (1, t) = 0 on (0, T ),

ũ(·, 0) = ũ0(·), z̃(·, T ) = 0 in (0, 1).

(3.35)

Clearly, (ũ, z̃) is the unique solution of (3.35) defined by transposition. This means
that, for every (a, b) ∈ L2(Q)2,

〈(ũ, z̃), (a, b)〉L2(Q)2 = 〈u0, ϕ(0)〉L2((0,1)) + 〈( f1 + ĥ1ω, f2), (ϕ, θ)〉L2(Q)2 ,

(3.36)

where (ϕ, θ) is the solution to

⎧⎪⎪⎨
⎪⎪⎩

L∗(ϕ, θ) = (a, b) in Q,

ϕ(0, t) = ϕ(1, t) = θ(0, t) = θ(1, t) = 0 on (0, T ),

ϕx (0, t) = ϕx (1, t) = θx (0, t) = θx (1, t) = 0 on (0, T ),

ϕ(·, T ) = ϕT (·), θ(·, 0) = 0 in (0, 1)

(3.37)

and L∗ is the adjoint operator of L given by:

L(ũ, z̃) = (L1(ũ, z̃), L2(ũ, z̃)),

with

L1(ũ, z̃) = ũt + ũxxxx + ũxx + uũx + ux ũ − (−�−21O + γ −2)z̃

and

L2(ũ, z̃) = −z̃t + z̃xxxx + z̃xx − (ũ + u)z̃x − (ũ − ud)1Od .

From (3.29) and (3.31), we see that (̂u, ẑ) also satisfies (3.36). Then, (̂u, ẑ) = (ũ, z̃)
is the weak solution to (3.35).

Finally, we must see that (̂u, ẑ, ĥ) ∈ E . Observe that from (3.34), we have that

ea0sβ̂ (̂τ )−7/2û, ea0sβ
∗
ẑ, e(a0sβ̂+sβ̆)(̂τ )−29/2ĥ1ω ∈ L2(Q)

and by hypothesis (3.26)

em0sβ̂ (τ̆ )−7/2 f1 ∈ L2(Q) and e2a0sβ̂ (τ̆ )−7/2 f2 ∈ L2(Q).
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Thus, it only remains to check that

ea0sβ̂ (̂τ )−29/2û, ea0sβ̂ (τ̆ )−c0 ẑ ∈ L2(0, T ; H2(0, 1)) ∩ L∞(0, T ; L2(0, 1)),

where c0 ≥ 9
2 .

(a) We define the functions

u∗ := ea0sβ̂ (̂τ )−29/2û, z∗ := ea0sβ̂ (τ̆ )−c0 ẑ

and

f ∗
1 := ea0sβ̂ (̂τ )−29/2( f1 + h1ω), z∗∗ := ea0sβ̂ (̂τ )−29/2(−�−2χO + γ −2)̂z
f ∗
2 := ea0sβ̂ (τ̆ )−c0 f2, u∗∗ := ea0sβ̂ (τ̆ )−c0(u − ud)χOd .

Then, (u∗, z∗) satisfies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
t + u∗

xxxx + u∗
xx + uu∗

x + uxu∗ = f ∗
1 + z∗∗ + (ea0sβ̂ (̂τ )−29/2)′û in Q,

−z∗t + z∗xxxx + z∗xx − (u∗ + u)z∗x = f ∗
2 + u∗∗ + (ea0sβ̂ (τ̆ )−c0 )′̂z in Q,

u∗(0, t) = u∗(1, t) = z∗(0, t) = z∗(1, t) = 0 on (0, T ),

u∗
x (0, t) = u∗

x (1, t) = z∗x (0, t) = z∗x (1, t) = 0 on (0, T ),

u∗(·, 0) = ea0sβ̂(0)(̂τ (0))−29/2u0(·), z∗(·, T ) = 0 in (0, 1).

(3.38)

(b) Now,we prove that the right-hand side of themain equations in (3.38) is in L2(Q).

• |ea0sβ̂ (̂τ )−29/2 f1| ≤≤ Cem0sβ̂ |τ̆ |−7/2| f1|.
• |ea0sβ̂ (̂τ )−29/2h1ω| ≤ Ce(a0sβ̂+sβ̆) |̂τ |−29/2|h|1ω.

• |z∗∗| = |ea0sβ̂ (̂τ )−29/2(−�−2χO + γ −2)̂z| ≤ Cea0sβ̂ |̂z|.
• |(ea0sβ̂ (̂τ )−29/2)′û| ≤ Cea0sβ̂ |̂τ |−7/2 |̂u|.
• | f ∗

2 | = |ea0sβ̂ (τ̆ )−c0 f2| ≤ Ce(a0+1)sβ̂ |τ̆ |−c0 | f2|.
• |(ea0sβ̂ (τ̆ )−c0)′̂z| ≤ Cea0sβ̂ |̂z|.
• Note that u∗∗ ∈ L2(Q) thanks to the hypothesis (3.27) and the fact that c0 ≥ 9

2 .
Indeed,

|u∗∗| = |ea0sβ̂ (τ̆ )−c0 (̂u − ud)χOd |
≤ Cea0sβ̂ |̂τ |−9/2 |̂u| + Cea0sβ̂ |τ̆ |−c0 |ud |.

Then, from a), b) and taking u0 ∈ L2(0, 1), we have u∗, z∗ ∈ L2(0, T ; H2(0, 1)) ∩
L∞(0, T ; L2(0, 1)) (see Lemma 8). This concludes the proof of Proposition 4. ��
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3.3 Local exact controllability to trajectories

In this section, we give the proof of Theorem 2 through fixed point arguments. In
order to apply the obtained results in the previous sections, we consider the following
change of variable. Let us set w = u − u and wd = ud − u, where u = solves (1.8).
It is easy to verify that w satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt + wxxxx + wxx + (uw)x + wxw = h1ω + (−�−21O + γ −2)z in Q,

−zt + zxxxx + zxx − (w + u)zx = (w − wd)1Od in Q,

w(0, t) = w(1, t) = z(0, t) = z(1, t) = 0 on (0, T ),

wx (0, t) = wx (1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

w(·, 0) = (u0 − u0)(·), z(·, T ) = 0 in (0, 1).

(3.39)

Observe that these changes reduce our problem to a local null controllability for the
solution w of the nonlinear problem (3.39), i.e., we are looking a control function h
and an associated solution (w, z) of (3.39) such that w(·, T ) = 0 in (0, 1). To this
end, we will apply an inverse function theorem of the Lyusternik type [19], which
will allow us to complete the proof of Theorem 2. More precisely, we will use the
following theorem.

Theorem 3 Suppose that B1,B2 are Banach spaces and

A : B1 → B2

is a continuously differentiable map.We assume that for b01 ∈ B1, b02 ∈ B2 the equality

A(b01) = b02 (3.40)

holds and A′(b01) : B1 → B2 is an epimorphism. Then there exists δ > 0 such that
for any b2 ∈ B2 which satisfies the condition

‖b02 − b2‖B2 < δ

there exists a solution b1 ∈ B1 of the equation

A(b1) = b2.

Before starting the proof of Theorem 2, small data must be considered in our analysis.
Thus, we impose that

‖em0sβ̂ (τ̆ )−7/2 f1‖L2(Q) + ‖e2a0sβ̂ (τ̆ )−7/2 f2‖L2(Q) + ‖w(·, 0)‖L2(0,1)

+
∫∫

Od×(0,T )

ρ2(t)|wd |2dxdt ≤ δ, (3.41)
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where δ is a small positive number and ρ = ρ(t) is a positive function blowing up
t = T .

Proof of Theorem 2 We apply Theorem 3 for the spaces B1 := E and

B2 := {( f1, f2, w0) ∈ X1 × X2 × L2(0, 1) : f1, f2, w0 satisfy (3.41)},

where X1 := L2(em0sβ̂ (τ̆ )−7/2(0, T ); L2(0, 1)) and

X2 := L2(e2a0sβ̂ (τ̆ )−7/2(0, T ); L2(0, 1)).

We define the operator A by the formula

A(w, z, h) :=
(
wt + wxxxx + wxx + (uw)x + wxw − h1ω − (−�−21O + γ −2)z,

−zt + zxxxx + zxx − (w + u)zx − (w − wd)1Od , w(·, 0)
)
,

for every (w, z, h) ∈ B1.
Let us see that A is of class C1(B1,B2). Indeed, notice that all the terms in A are

linear, except for wwx and wzx . Thus, we only have to check that these nonlinear
terms are well-defined and depend continuously on the data. Thus, we will prove that
the bilinear operator

((w1, z1), (w2, z2)) �−→ w1w2
x

is continuous from Z × Z to X1, and the bilinear form

((w1, z1), (w2, z2)) �−→ w1z2x

is continuous from Z × Z to X2, where

Z :=
{
y : ea0sβ̂ (̂τ )−c1 y ∈ L2(0, T ; H2(0, 1)) ∩ L∞(0, T ; L2(0, 1)), c1 >

29

2

}
.

In fact, for any w1, w2 ∈ X1 we have

‖w1w2
x‖X1 = ‖em0sβ̂ (τ̆ )−7/2w1w2

x‖L2(Q)

≤ C‖ea0sβ̂ (̂τ )−7/4w1ea0sβ̂ (̂τ )−7/4w2
x‖L2(Q)

≤ C‖ea0sβ̂ (̂τ )−29/2w1ea0sβ̂ (̂τ )−29/4w2
x‖L2(Q)

≤ C‖ea0sβ̂ (̂τ )−29/2w1‖L∞(0,T ;L2(0,1))‖ea0sβ̂ (̂τ )−29/4w2
x‖L∞(0,T ;L2(0,1))

≤ C‖w1‖Z‖w2‖Z .
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On the other hand, for c1 > 29
2 and any w1, z2 ∈ X2 , we have

‖w1z2x‖X2 = ‖ea0sβ̂ (̂τ )−7/4w1ea0sβ̂ z2‖L2(Q)

≤ C‖ea0sβ̂ (̂τ )−29/2w1ea0sβ̂ (̂τ )−c0 z2x‖L2(Q)

≤ C‖w1‖Z‖z2‖Z .

Notice that A′(0, 0, 0) : B1 → B2 is given by

(wt + wxxxx + wxx + (uw)x − h1ω − (−�−21O + γ −2)z,−zt + zxxxx + zxx
−uzx − (w − wd)1Od , w(·, 0)),

for all (w, z, h) ∈ B1. In virtue of Proposition 4, this functional satisfies Im(A′(0,
0, 0)) = B2.

Let b01 = (0, 0, 0) and b02 = (0, 0, w0). Then, Eq. (3.40) holds. So all neces-
sary conditions to apply Theorem 3 are fulfilled. Therefore, there exists a positive
number δ such that if (w0, wd) satisfy the inequality (3.41), we can find a control
h ∈ L2(0, T ; L2(ω)) and an associated solution (w, z) to (3.39) satisfyingw(·, T ) = 0
in (0, 1). This finishes the proof of Theorem 2. ��

3.4 Numerical framework

This section is devoted to present numerical experiments on the RSC problem. which
was proved at the above section. In other words, we show approximations to Problem 3
and thereby to Problem 2 (without disturbance signal, i.e., ψ ≡ 0). Our approach
given in Sect. 2.3 will be used and completed for tackling these problems. We focus
our attention in solving the following extremal problem:

inf
1

2

∫∫
ω×(0,T )

|h|2dxdt, subject to h ∈ L2(Q), supp h ⊂ ω × (0, T ), and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut + uxxxx + uxx + uux = h1ω + �−21Oz − γ −2z in (0, 1) × (0, T ),

−zt + zxxxx + zxx − uzx = (u − ud)1Od in (0, 1) × (0, T ),

u(0, t) = u(1, t) = ux (0, t) = ux (1, t) = 0 on (0, T ),

z(0, t) = z(1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

u(·, 0) = u0(·), u(·, T ) = u(·, T ), z(·, T ) = 0 in (0, 1).

(3.42)

Using optimal control techniques, we consider a regularization to the functional
given in (3.42) as follows:

G(h) = β

2

1∫
0

|u(x, T ) − u(x, T )|2dx + 1

2

∫∫
→×(0,T )

|h|2dxdt, β > 0. (3.43)
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To optimize (3.43), a Lagrangian formulation might be developed. Thus, the coupled
adjoint system (ϕ1, ϕ2) associated with (3.42) is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ϕ1
t + ϕ1

xxxx + ϕ1
xx − uϕ1

x = −ϕ21Od + zxϕ2 in (0, 1) × (0, T ),

ϕ2
t + ϕ2

xxxx + ϕ2
xx + (uϕ2)x = �−2ϕ11O − γ −2ϕ1 in (0, 1) × (0, T ),

ϕ1(0, t) = ϕ1(1, t) = ϕ1
x (0, t) = ϕ1

x (1, t) = 0 on (0, T ),

ϕ2(0, t) = ϕ2(1, t) = ϕ2
x (0, t) = ϕ2

x (1, t) = 0 on (0, T ),

ϕ1(x, T ) = −β(u(·, T ) − u(·, T )), ϕ2(x, 0) = 0 in (0, 1).

(3.44)

A simple computation allows us to deduce the following expression:

∂G
∂h

(h) = h − ϕ1(u(h), z(h)).

In Algorithm 3, we describe the required steps for solving the problem (3.42). Some
remarks on this algorithm are given below.

Algorithm 3: Robust Stackelberg controllability algorithm to the problem (3.42)

Input: Initialize a h0 on t ∈ [0, T ].
1 For n ≥ 0.
2 STEP1: Compute: un , zn solution of the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + uxxxx + uxx + uux = hn1ω + �−21Oz − γ −2z in (0, 1) × (0, T ),

−zt + zxxxx + zxx − uzx = (u − ud )1Od
in (0, 1) × (0, T ),

u(0, t) = u(1, t) = ux (0, t) = ux (1, t) = 0 on (0, T ),

z(0, t) = z(1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

u(·, 0) = u0(·), u(·, T ) = u(·, T ), z(·, T ) = 0 in (0, 1).

(3.45)

3 STEP2: Compute ϕ1,n , ϕ2,n using the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ϕ1t + ϕ1xxxx + ϕ1xx − unϕ1x = −ϕ21Od
+ znxϕ

2 in (0, 1) × (0, T ),

ϕ2t + ϕ2xxxx + ϕ2xx + (unϕ2)x = �−2ϕ11O − γ −2ϕ1 in (0, 1) × (0, T ),

ϕ1(0, t) = ϕ1(1, t) = ϕ1x (0, t) = ϕ1x (1, t) = 0 on (0, T ),

ϕ2(0, t) = ϕ2(1, t) = ϕ2x (0, t) = ϕ2x (1, t) = 0 on (0, T ),

ϕ1(x, T ) = −β(un(·, T ) − u(·, T )), ϕ2(x, 0) = 0 in (0, 1)

(3.46)

4 STEP3: Compute
∂G
∂h

(hn) = hn − ϕ1,n(u(hn), z(hn)).

5 STEP4: Find α ∈ R
+ such that

min
α∈R+ G

(
hn − α

∂G
∂h

(hn)
)
.

6 STEP5: Set

hn+1 = hn − α
∂G
∂h

(hn).

7 STEP6: If ‖ ∂G
∂h (hn)‖L2(Q) ≤ tol, set h = hn+1. Otherwise, return to STEP1.
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Fig. 8 Lider function (left) and state (right). T = 3 s, N = 100,t = 2 × 10−2, � = γ = 40. Domains
ω = (−3, 1) and O = (2, 5), initial datum u0(x) = 10−3 exp (−x2)
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Fig. 9 Disturbance (left) function and follower (right). T = 3 s, N = 100,t = 2 × 10−2, � = γ = 40.
Domains ω = (−3, 1) and O = (2, 5), initial datum u0(x) = 10−3 exp (−x2)

Remark 6 • We highlight that the algorithm 1 associated with the robust control
problem must be used in the STEP1 of Algorithm 3 to find a numerical solution
of (3.45).

• With respect to the STEP 2, observe that (3.46) corresponds to a linear model,
whose implementation is carried out with the conjugate gradient method (CGM)
for coupled system,which is inspired in the book [17].Due to the linearity of (3.46),
we mention that the CGM shows a better convergence than method proposed in
[6, 38]. However, this analysis is omitted in this paper because it is far away of
our main goals.

• On the STEP 4, we have used the same algorithm mentioned in Sect. 2.3.

Now, we present some numerical examples related to the robust Stackelberg con-
trollability problem given in (3.42). We set the parameter β = 10−7; meanwhile, the
trajectory is the function u(x, t) = 0. Again,� = (−30, 30). In Figs. 8 and 9, we take
configurations in which the intersection of the sub-domain ω (for the leader control)
and the sub-domain O (for the follower control) is the empty set. Additionally, we
bring a numeric response to the case ω ∩ O �= ∅, see Figs. 10 and 11. Recall that in
Theorem 2, the geometrical condition ω ∩ O = ∅ is a sufficient hypothesis and used
in section on Carleman estimates.
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Fig. 10 Lider (left) and state (right). T = 3 s, N = 100,t = 2 × 10−2, � = γ = 40. Domains
ω = (−3, 1) and O = (−1, 3), initial datum u0(x) = 10−3 exp (−x2)

-2
030

-1

0

20

1

1

2

10

10-7

3

2

4

0

5

-10

6

3
-20

4-30

-1

0

1

2

3

4

5

10-7

-6
0

-5

30

-4

-3

-2

10-7

20

-1

1

0

1

10 20
-10 3-20

4-30

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

10-7

Fig. 11 Disturbance function (left) and follower (right). T = 3 s, N = 100,t = 2 × 10−2, � = γ = 40.
Domains ω = (−3, 1) and O = (−1, 3), initial datum u0(x) = 10−3 exp (−x2)

4 Comments and open problems

In this paper, we have considered the robust Stackelberg controllability problem for
the KS equations. However, there are several comments and open questions that are
worth mentioning.

• The robustness of a nonlinear KS equation posed in a bounded domain is achieved
by using optimal control theory that allows us to guarantee the existence, unique-
ness and also characterization of a saddle point for the system (1.6).
To our knowledge, this paper contains the first numerical description concerning
the robustness process for the KS equation. Due to the high order in space (i.e.,
fourth order derivates), an appropriate change of variable is used to implement low-
order finite elements, more precisely, P1-type Lagrange elements; meanwhile, a
θ -scheme/Bashforth method was used for the time discretization. Although this
paper does not present an exhaustive numerical analysis of our method, since it is
far way of the main goals, several configurations to the time–space discretization
displayed good results for the error in the L2-norm and L∞-norm, see Table 1.
Besides, from the algorithms presented in [6, 38] for the Navier–Stokes system, we
proposed new iterative schemes of constructing the ascent and descent directions.

• In this paper, we present the robust Stackelberg controllability (RSC) problem for
the KS equation, that is, once we have obtained the robust pair (v̄, ψ̄), we proved
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the exact controllability to the trajectories for the leader control h. A direct conse-
quence is the Stackelberg strategy between the leader h and the follower v. From
a theoretical perspective, the main novelties are new Carleman inequalities and its
relationship with the robustness parameters � and γ , see Propositions 3 and 4.
Numerically, some approximate solutions to the RSC problem are presented by
implementing the Algorithm 3. In addition, by considering the geometrical condi-
tion between the leader and the follower, i.e., ω ∩ O = ∅, the numerical examples
allow us to visualize that such an condition (sufficient condition in Theorem 2)
could be removed in some sense that means ω ∩ O �= ∅ could proceed by using
perhaps another strategy.

• It would be interesting to study the case of a cooperative game between the leader
control h and the follower control v, that is, to analyze the case in which

(leader domain h ∩ follower control v) �= ∅.

• Another problem consists in the possibility of extending the notion of a robust
control to several inputs, for example, instead of a control v and a disturbance ψ ,
to take several control v1, . . . , vN and several disturbance signals ψ1, . . . , ψM ,
M, N ∈ N.

• In the same spirit of this paper, the extension of our main results (Theorems 1 and
2) to its model in higher dimensional, that is, biharmonic-type equations, could be
interesting.

• Finally, efficient numerical schemes always presenting a challenge to overcome
in each problem.
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A. Appendix

In this appendix, we mention the well-posedness results we used in this paper for both
linearized and nonlinear equations. First, in order to consider external sources with
lower regularity in space, we define solution by transposition for the linearized KS
equation. Let us define

Z := C([0, T ]; H2
0 (0, 1)) ∩ L2(0, T ; H4(0, 1)) ∩ L∞(0, T ;W 1,∞(0, 1)).
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Hence, let y0 ∈ H2
0 (0, 1) and let y ∈ Z be a solution of the KS equation

⎧⎪⎨
⎪⎩
yt + yxxxx + yxx + yyx = 0 in Q,

y(0, t) = y(1, t) = yx (0, t) = yx (1, t) = 0 on (0, T ),

y(·, 0) = y0 in (0, 1).

(A.1)

First, we consider the following linearized system:

⎧⎪⎨
⎪⎩
yt + yxxxx + yxx + yyx + yx y = f in Q,

y(0, t) = y(1, t) = yx (0, t) = yx (1, t) = 0 on (0, T ),

y(·, 0) = y0 in (0, 1).

(A.2)

Now, from [8,Section 2] we have the following definition.

Definition 1 Let y0 ∈ H−2
0 (0, 1) and f ∈ L1(0, T ;W−1,1(0, 1)). A solution of the

system (A.2) is a solution y ∈ L2(Q) such that for any g ∈ L2(Q),

∫∫
Q

y(x, t)g(x, t)dxdt = 〈y0, w(0, ·)〉H−2(0,1),H2(0,1)

+〈 f , w〉L1(0,T ;W−1,1(0,1)),L∞(0,T ;W 1,∞(0,1)), (A.3)

where w = w(x, t) ∈ Z is the solution to

⎧⎪⎨
⎪⎩

−wt + wxxxx + wxx − ywx = g in Q,

w(0, t) = w(1, t) = wx (0, t) = wx (1, t) = 0 on (0, T ),

w(·, T ) = 0 in (0, 1).

(A.4)

Lemma 6 Assume y ∈ Z . Then, for any y0 ∈ H−2
0 (0, 1) and f ∈ L1(0, T ;

W−1,1(0, 1)), the linearized system (A.2) admits a unique solution y ∈ C([0, T ];
H−2(0, 1)) ∩ L2(0, T ; L2(0, 1)).

Remark 7 Note that both the regularity for the solution w of (A.4) and an exhaustive
proof of Lemma 6 can be obtained in an easy way from [8,Proposition 2.1] and [22].
Due to that, we have omitted those details here.

The following lemma shows regularity results for (A.2) by considering data ( f , y0)
belong to more regular spaces like L2(Q)×L2(0, 1) and L2(Q)×H2

0 (0, 1). We invite
to the reader to review [7,Appendix A], [8,Proposition 2.1] and [22], for more details.

Lemma 7 Assume y ∈ Z .

(a) For any y0 ∈ L2(0, 1) and f ∈ L2(Q), the linearized system (A.2)
admits a unique solution y ∈ C([0, T ]; L2(0, 1)) ∩ L2(0, T ; H2(0, 1)) with
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yt ∈ L2(0, T ; H−2(0, 1)). Moreover, there exists a positive constant C =
C(‖y‖L∞(0,T ;W 1,∞(0,1)), T ) such that

‖y‖C([0,T ];L2(0,1))∩L2(0,T ;H2(0,1)) ≤ C
(
‖ f ‖L2(Q) + ‖y0‖L2

0(0,1)

)
. (A.5)

Furthermore, if there is a constant R > 0 such that ‖y‖L∞(0,T ;W 1,∞(0,1)) ≤ R,
then the constant C only depends on R and T.

(b) For (y0, f ) ∈ H2
0 (0, 1) × L2(Q), the linearized system (A.2) admits a unique

solution y in C([0, T ]; H2
0 (0, 1)) ∩ L2(0, T ; H4(0, 1)). Moreover, there exists a

positive constant C = C(‖y‖L∞(0,T ;W 1,∞(0,1)), T ) such that

‖y‖C([0,T ];H2
0 (0,1))∩L2(0,T ;H4(0,1)) ≤ C

(
‖ f ‖L2(Q) + ‖y0‖H2

0 (0,1)

)
, (A.6)

Furthermore, if there is a constant R > 0 such that ‖y‖L∞(0,T ;W 1,∞(0,1)) ≤ R,
then the constant C only depends on R and T.

Now, we mention a result for coupled fourth-order system. Its proof is found in
[7,Appendix A]. Let us consider the system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yt + yxxxx + yxx + yyx + yx y = g1 + −μ−2z in Q,

−zt + zxxxx + zxx − (y + y)zx = g2 in Q,

y(0, t) = y(1, t) = z(0, t) = z(1, t) = 0 on (0, T ),

yx (0, t) = yx (1, t) = zx (0, t) = zx (1, t) = 0 on (0, T ),

y(·, 0) = y0(·), z(·, T ) = 0 in (0, 1).

(A.7)

Lemma 8 Assume that y ∈ L∞(Q). Then, there exists μ0 > 0 such that for every
μ ≥ μ0, any g1, g2 ∈ L2(Q) and any y0 ∈ L2(0, 1), (y, z) is the unique solution of
(A.7) in the space

(y, z) ∈ (L∞(0, T ; L2(0, 1)) ∩ L2(0, T ; H2(0, 1)))2.

The next step in this appendix corresponds to the nonlinear problem

⎧⎪⎨
⎪⎩
yt + yxxxx + yxx + yyx + yx y + yyx = f in Q,

y(0, t) = y(1, t) = yx (0, t) = yx (1, t) = 0 on (0, T ),

y(·, 0) = y0 in (0, 1).

(A.8)

Lemma 9 (a) Assume y ∈ L∞(0, T ;W 1,∞(0, 1)). There exists δ > 0 such that for
any ( f , y0) ∈ L2(Q) × L2(0, 1) satisfying

‖y0‖L2(0,1) + ‖ f ‖L2(Q) ≤ δ

problem (A.8) has a unique solution in C([0, T ]; L2(0, 1))∩ L2(0, T ; H2(0, 1)).
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(b) Let y = 0 in (A.8). There exists δ > 0 such that for any ( f , y0) ∈ L2(Q)×H2
0 (0, 1)

satisfying

‖y0‖H2
0 (0,1) + ‖ f ‖L2(Q) ≤ δ

problem (A.8) has a unique solution in C([0, T ]; H2
0 (0, 1))∩ L2(0, T ; H4(0, 1)).

Moreover, there exists a positive constant C depending only on T such that

‖y‖C([0,T ];H2
0 (0,1))∩L2(0,T ;H4(0,1)) ≤ C

(
‖ f ‖L2(Q) + ‖y0‖H2

0 (0,1)

)
. (A.9)

Remark 8 Although in [7,Theorem A.4] the authors have proved the first part
of the above result by considering f ∈ L1(0, T ; L2(0, 1)) instead of f ∈
L2(0, T ; L2(0, 1)), their arguments can be easily adapted for proving this part of
Lemma 9. The second part can be obtained from [22]. For this reason, we have omit-
ted the proof of Lemma 9.

Remark 9 Observe that, from Lemma 9, part b), and the fact that H2
0 (0, 1) embeds

continuously into W 1,∞(0, 1), it follows that y ∈ L∞(0, T ;W 1,∞(0, 1)).
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