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Abstract
The purpose of this article is to introduce radial basis function (RBF)methods for solving both
direct Stokes equations and controllability problems for the Stokes system with few internal
scalar controls. In both cases,Dirichlet orNavier-slip boundary conditions are considered.We
introduce two radial basis function solvers, one global and the other local, to solve Stokes
equations. These methods are used to discretize the primal and adjoint systems related to
the controllability problems. Both techniques are based on divergence-free global RBFs.
A global colocation technique based on Div-free inverse multi-quadrics is formulated and
analyzed. A generalization of scalar hybrid kernels to a vector divergence-free hybrid RBFs
setting is defined. Based on these kernels, the local Hermite interpolation (LHI) method in
vector form is introduced. Due to the properties of the hybrid kernel, we show that due to the
properties of the hybrid kernel this local method, can reduce up to double precision, the value
of the condition number of the local Gram matrices. Simultaneously, it is proved that the real
components of the eigenvalues corresponding to the global LHI matrix are negative and that
consequently backward difference formulas are stable for time integration. The conjugate
gradient algorithm is adapted to the radial basis function setting to solve the controllability
problems. Several benchmarks problems in two dimensions with a non-convex domain (a star
shape) are numerically solved by theseRBFsmethods to display and compare their feasibility.
The solutions to these problems are also implemented by finite element techniques to study
their relative performance.

Keywords Stokes system · Controllability · Navier-slip boundary conditions · Radial basis
functions · Local Hermite interpolation method · Hybrid kernels

Mathematics Subject Classification 65D12 · 93B05 · 76D07

1 Introduction

The main goal of this article is to introduce radial basis function (RBFs) methods to solve the
direct Stokes equations and control problems for the Stokes system with few internal scalar
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controls. In both problems, Dirichlet or Navier-slip boundary conditions are considered.
The theoretical setting of the control problem is first reviewed. To solve this problem, it is
necessary to solve two couple Stoke evolutionary systems called primal and adjoint equations.
This paper has two major parts: in the first part, we introduce RBFs algorithms for the Stokes
equations with Dirichlet or Navier-slip boundary conditions which will be used to solve the
direct primal and adjoint problems. In the second part, using these techniques, an iterative
algorithm is formulated to obtain the solution of the control problem.

Stationary and evolutionary Stokes equations have been recently solved using analytically
divergence-free and curl-free matrix-valued, positive definite kernels in Wendland (2009),
Fuselier et al. (2016) and Keim andWendland (2016). In particular, Wendland (2009) formu-
lates for first time a general framewhich establish applications to partial differential equations
exploiting the fact that the approximation space is analytically divergence free.

On the other hand, Fuselier et al. (2016) solve the Stokes problem using a divergency
and rotational free matrix-valued positive definite kernels, based on global scalar RBFs
and using Hodge decomposition to decouple the Stokes problem into an equation for the
velocity and an equation for the pressure. In all these works, based on global collocation
techniques, numerical examples for different Stokes benchmark problems, with Dirichlet
boundary conditions on disk domains, were successfully solved.

Regarding RBF colocation and RBF-finite difference methods, it is well known that as the
fill distance or the shape parameter tends to zero, the condition number of the corresponding
Gram matrices grows. The solution to this problem has been studied by different techniques,
see Flyer et al. (2016), Mishra et al. (2017), Fornberg and Flyer (2015b) and references
therein. On the other hand for scalar evolutionary problems discretized by collocation, it has
been observed that the corresponding Gram matrix can have eigenvalues with positive real
components. This implies that discrete time integration do not converge under iterations, and
a solution to this problem has been formulated in Fornberg and Flyer (2015a) by including
a hyperviscosity term.

In what follows we describe the main contributions of this work.

1. We introduce two types of radial basis function solvers for the direct Stokes problems, one
global and the other local. These methods are used to discretized the primal and adjoint
systems related to the control problem. Our approach use central ideas from Wendland
(2009) general frame adapted and modified in several points to be described below.
Direct global solvers for the Stokes problem are built using Hermite interpolation tech-
nique based on divergence-free IMQ-RBFs. This allows to satisfy the incompressibility
condition, at a discrete level, and to easily incorporate Navier-slip or Dirichlet boundary
conditions. The first contribution of our article is that, as far as we know, we use for the
first time the Navier-slip boundary conditions for the Stokes equations.

2. Unlike the benchmarks problems of the articles cited above, which used disks domains,
a second contribution of our paper is that we use a star shape, thus non-convex domains
in all the numerical experiments. We first analyze the numerical behavior of Div-free
global collocation for these two new conditions, namely for star-shape domains and slip
boundary conditions.

3. The evolutionary Stokes problem (in a non-convex domain) is first solved using global
collocationDiv-free RBF based on inversemulti-quadrics, IMQ, and techniques on back-
ward difference formulas (BDFs). Besides, a stability analysis is performed for this global
method. We numerically prove that the real components of the eigenvalues correspond-
ing to the Gram matrix are all negative. This implies that the BDFs converges under
iterations. Indeed, we numerically prove that the order of convergence is exponential in
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space and quadratic in time.
As it is well known, the condition number of global collocation methods increases as the
number of nodes grows, i.e., the so-called trade-off principle is satisfied; thus, this global
method is limited to a relatively small number of nodes even in quad precision.

4. To solve direct Stokes problemswith larger number of nodes, a localHermite interpolation
(LHI) method based on div-free RBFs is introduced.
We first solved the stationary Stokes problem with the LHI method using div-free RBFs
inverse multi-quadrics (IMQ) with extended precision. Consistently with the scalar case,
we find that the exponential convergence can be attained as the fill distance decreases.
However, we also find that:

(a) As expected, the condition number of the local matrices grows exponentially as the
number of local nodes increases and

(b) Although the condition number of the global matrix is lower than the condition
number of the local matrices, the real component of its eigenvalues can be positive.
Thus, for the evolutionary Stokes equation, the method does not converges for BDF
schemes.

5. To deal with these two problems, we generalize to the LHI vectorial Div-free setting a
recent formulation for scalar problems, see Pankaj et al. (2019), Zhang (2019). These
works introduce a new RBF basis called hybrid kernels, where hybrid scalar kernels are
a convex combination of the sum of a Gaussian and Poly-harmonic odd scalar RBF. This
generalization is the fifth contribution of our paper.
To be precise, in this article, we introduce and define Div-free Hybrid kernels. By for-
mulating the vectorial LHI method in this new basis we find that the eigenvalues of the
corresponding globalmatrix have all negative real components. Thus, themethod is stable
for BDF schemes. Moreover, the condition numbers of the corresponding local matrices
are considerable lower than the condition numbers of the local matrices related to inverse
multi-quadrics kernels. It is interesting to note that although the real components of the
eigenvalues of the global collocation scheme, discretized by inverse multi-quadrics, can
be positive no mater which shape parameter we choose, this is not true for the global
matrix of the LHI method with hybrid kernels.

6. We mention that we only find few articles in control theory problems using the radial
basis function literature. Up to our knowledge, only some works on optimal control by
RBF techniques have been reported in this field (Pearson 2013; González-Casanova et al.
2019; Mirinejad and Inanc 2017; Kishida and Braatz 2009; Rad et al. 2014). On the other
hand and up to our knowledge, nowork on controllability solved byRBFs has appeared in
the literature. Thus, the sixth and final contribution of this article is to solve approximate
controllability problems for the Stokes equations. In all cases, numerical experiments are
performed to study and analyze these methods.

The paper is organized as follows. In Sect. 2, we give the continuous description of the
approximate control problem. The divergence-free global collocation method and stability
results are presented in Sect. 3. In Sect. 4, we recall the basic notation and concepts of the
LHI scalar method and we introduce the vectorial RBF-LHI approach for solving the Stokes
system. We solve the stationary Stokes problem by the inverse multi-quadrics Div-free tech-
nique. Divergence-free hybrid kernels are introduced and the evolutionary Stokes problem
is numerically solved. Finally, in Sect. 5 we conclude the paper by applying these RBFs
methods to the controllability problems with few scalar controls whith either Dirichlet or
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Navier-slip boundary conditions. These results are compared to the equivalent finite element
results. Conclusions and final remarks are included.

2 Control problem formulation

In this section, we introduce the notation and the continuous setting of the Stokes control
problem that will be numerically solved in this article.

Let us first introduce some notation. LetΩ be a nonempty bounded connected open subset
of Rd (d = 2 or d = 3) of class C∞. Let T > 0 and let ω ⊂ Ω be a (small) nonempty open
subset which is the control domain. Furthermore, Q := Ω × (0, T ), � := ∂Ω × (0, T ),
ν(x) is the outward unit normal vector to Ω at the point x ∈ ∂Ω . Moreover, let

H :=
{
u ∈ L2(Ω)d : ∇ · u = 0 in Ω, u · ν = 0 on ∂Ω

}

and
V :=

{
u ∈ H1

0 (Ω)d : ∇ · u = 0 in Ω
}

.

The continuous approximate control problem for the Stokes system with either Dirichlet
or Navier-slip boundary conditions, that we are interested in, is defined as follows:

Approximate control. Given an initial data y0, we are looking for a control function v =
v(x, t) acting in ω × (0, T ) with supp v ⊂ ω × (0, T ), such that the solution of the problem

⎧
⎪⎪⎨
⎪⎪⎩

yt − μΔy + ∇ p = v1ω in Q,

∇ · y = 0 in Q,

+BC on �,

y(·, 0) = y0(·) in Ω,

(1)

satisfies
y(·, T ) ≤ ε in Ω, (approximate control to zero) (2)

for every ε > 0.
In (1), μ > 0 is the viscosity coefficient and p is the pressure. We focus our work in two

types of boundary conditions on �, namely:

y = g︸ ︷︷ ︸
(a) Dirichlet

or y · ν = 0, (σ (y, p) · ν)tg = g,︸ ︷︷ ︸
(b) Navier-slip

(3)

where σ(y, p) := −pId + 2μDy is the stress tensor, where D denotes the symmetrized
gradient of y, and tg stands for the tangential component of the corresponding vector field,
i.e.,

ytg = y − (y · ν)ν.

From a physical point of view, the Navier-slip boundary condition arises from the interaction
between wall and fluid and when the temperature is high. This behavior involves a movement
on the boundary (slip), loosing energy, which do not penetrate the boundary (impermeable
boundary), among other factors. The use of these slip conditions allows to describe phenom-
ena observed in nature and remove un-physical singularities, see, for instance, (Cebeci 2012;
He andWang 2009) and references therein for more details. Now, from a mathematical point
of view, such boundary conditions say that the tangential component of the stress tensor is
proportionality to the tangential component of the velocity (Navier 1823)

y · ν = 0, (σ (y, p) · ν)tg + kytg = 0,
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where k is a function that measures the local viscous coupling fluid–solid. We highlight
that this proportionality factor can depend on the velocity as well as on the pressure, which
complicate both the theoretical analysis and numerical solutions.

We now characterize the control problem in terms of the optimal or minimum value of
a quadratic convex functional in (L2(Q))2 in the sense of García et al. (2017). Namely, for
y0 ∈ H , we aim to obtain the control v with one vanishing component ( j th component,
j ∈ {1, 2}) such that it minimizes the functional J defined by

J (v) := 1

2

∫∫

ω×(0,T )

|v|2 dx dt + 1

2β1
‖y(·, T )‖2L2(Ω)

dx + 1

2β2

∫∫

ω×(0,T )

|v j |2 dx dt, (4)

where y is solution of the Stokes system (1), β1, β2 are arbitrary positive numbers associated,
respectively, with the final condition y(·, T ) ≤ ε and with the control function v.

The optimal value of the control v can be obtained by determining the Fréchet derivative
of J with respect to v. It is easy to verify that this corresponds to the following expressions:

∂ J

∂v
(v) = vi − wi if i �= j and

∂ J

∂v
(v) = 1

2β2
v j − w j , in ω × (0, T ), (5)

where w ∈ V is the solution of the adjoint system of (1):

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−wt − μΔw + ∇q = 0 in Q,

∇ · w = 0 in Q,

+BC on �,

w(·, T ) = − 1

β1
y(·, T ) in Ω.

(6)

In García et al. (2017), the authors proved that for every β1 > 0, β2 > 0, there exists
a unique minimal control v associated to (4) which is characterized by (1), (5) and (6). We
underline that only Dirichlet boundary conditions were treated in García et al. (2017).

From an abstract point of view, the control theory for the Stokes system with internal
controls has been studied intensively for the mathematical community. The interested reader
can see for instance (Guerrero and Montoya 2018) and references therein.

Meanwhile, from a computational point of view, we only know the recent paper by
Fernández-Cara et al. (2017), whose numerical experiments are developed in two dimension
for the heat, Stokes and Navier–Stokes with Dirichlet boundary conditions. The implemented
methodology in Fernández-Cara et al. (2017) for the fluid equations is based on the so-called
Fursikov–Imanuvilov formulation (Fursikov and Imanuvilov 1996) and Lagrangian approxi-
mation throughout mixed finite elements. Another approximation scheme to the approximate
control problem is given in Fernández-Cara et al. (2015) for a turbulencemodel and also using
Dirichlet boundary conditions.

We close this section by pointing out that, as far as we know, it does not exists a numerical
approximation through RBFs for the Stokes problem with Navier-slip boundary conditions.
In the following sections, we fill this gap and show its application for solving the approximate
control problem for the Stokes system with few scalar controls described above.
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3 Global divergence-free RBFmethods for evolutionary Stokes
problems

In this section, we present a RBF method for solving the evolutionary Stokes problem. The
spatial discretization of the Stokes equation is similar to the compact support divergence-
free RBF approximation ofWendland (2009), except that here we use global IMQ-RBFs. We
incorporate bothDirichlet andNavier-slip boundary onto a non-convex domain, namely, a star
shape. Extended precision is used in all numerical examples. Besides, a stability analysis of
the corresponding Grammatrix is performed.We numerically prove that the real components
of its eigenvalues are all negative, which shows that the backward differentiation formulas
converge under iteration, more precisely, exponential convergence in space and algebraic
convergence in time. Those behaviors are illustrated through numerical examples.

Let us define L(y, p) := −μΔy + ∇ p and consider the system
⎧
⎪⎪⎨
⎪⎪⎩

yt + L(y, p) = f in Q,

∇ · y = 0 in Q,

By = g on �,

y(·, 0) = y0(·) in Q,

(7)

where B is one of the boundary operators defined in (3).

3.1 Div-free-RBF collocationmethod and backward differentiation formula

The goal is to build a PDE operator via a finite difference approximation for the temporal
derivative; meanwhile, a divergence-free RBF is used for the spatial operators.We first define
the Div-free RBF as follows.

Definition 1 The divergence-free matrix-valued kernel is defined by

�Div = ∇ × Δ × ψ =
{
−ΔI + ∇∇T

}
ψ,

where I is the identity matrix and ψ : Rd → R is a smooth positive definite RBF.

The time scheme follows some ideas of Stevens et al. (2011). To illustrate this method, we
use backward finite differences techniques, which are appropriate for the Stokes equations.
The scheme at any time step for the system (7) is given by

⎧⎪⎪⎨
⎪⎪⎩

yn+s + Δt βs L(yn+s, pn+s) = Δt βs fn+s +
s−1∑
k=0

σkyn+k in Q,

∇ · yn+s = 0 in Q,

Byn+s = gn+s on �,

(8)

where βs, σk are known parameters defined by the BDF techniques. Thus, in each step, we
solve the following PDE

⎧
⎨
⎩

L̄(yn+s, pn+s) = Fn+s in Q,

∇ · yn+s = 0 in Q,

Byn+s = gn+s on �,

(9)

where L̄, Fn+s are defined by

L̄(yn+s, pn+s) := yn+s+Δt βs L(yn+s, pn+s), Fn+s := Δt βs fn+s+
s−1∑
k=0

σkyn+k . (10)
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The field yn+s is then approximate by a linear combination of the divergence-free matrix-
valued kernel �Div (see Definition 1). Thus, the velocity–pressure vector (yn+1, pn+1) is a
linear combination of

� =
[

�Div 0
0 φ

]
: Rd → R

(d+1)×(d+1),

where φ : Rd → R is a positive definite RBF.
On the other hand, using the generalized interpolation collocation method, see (Wendland

2004), the RBF ansatz is given by

( ŷn+s
, p̂n+s)(x) =

d∑
i=1

Nb∑
j=1

Bξ
i �(x − ξ j )α

n+s
(i−1)Nb+ j

+
d∑

i=1

Nin∑
j=1

L
ξ

i �(x − ξNin+ j )β
n+s
(i−1)Nb+ j (11)

where B is the boundary condition operator; (α, β) ∈ R
d(Nb+Nin), Nb, Nin are the total

number of boundary and interior nodes, respectively, and ξb1..Nb
, ξ inNb+1....Nb+Nin

∈ R
d , are

the boundary and interior centers. On the other hand, Bξ
i �, L

ξ

i � are vector-valued functions

from R
d × R

d to R
d+1 defined as the application of the operator Bξ

i , L
ξ

i to each row of the
kernel �.

We then replace the ansatz (11) in (9) and obtain the discrete systems

H+
(

αn+s

βn+s

)
=
(
Fn+s

gn+s

)
, (12)

where the collocation matrix H+ is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L1
xBξ

1�1(xNb+1) . . . L1
xBξ

d�Nb (xNb+1) L1
x
Lξ
1�Nb+1(xNb+1) . . . L1

x
Lξ
d�Nb+Nin (xNb+Nin )

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

Ld
xBξ

d�1(xNb+Nin ) . . . Ld
xBξ

d�Nb (xNb+Nin ) Ld
x
Lξ
1�Nb+1(xNb+Nin ) . . . Ld

x
Lξ
d�Nb+Nin (xNb+Nin )

Bx
1Bξ

1�1(x1) . . . Bx
1Bξ

d�Nb (x1) Bx
1 L

ξ
1�Nb+1(x1) . . . Bx

1 L
ξ
d�Nb+Nin (x1)

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

Bx
dB

ξ
1�1(xNb ) . . . Bx

dB
ξ
d�Nb (xNb ) Bx

d L
ξ
1�Nb+1(xNb ) . . . Bx

d L
ξ
d�Nb+Nin (xNb )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with � j (x) = �(x − ξ j ).

3.2 Stability analysis for BDF schemes

In this subsection, we present the stability analysis related to the previous scheme by using
a matrix method similar to the procedure developed in Chinchapatnam et al. (2006). Our
purpose here is to establish a condition to estimate the spectral radius of the gram Matrix.
First, using (11), we define the interpolation matrix A ∈ R

(Nin+Nb)×(Nin+Nb) such that

Aᾱn+s =
(
Mφin

Mφb

)
ᾱn+s =

(
yn+s(xin1 ), . . . , yn+s(xinNin

), yn+s(xb1 ), . . . , y
n+s(xbNb

)
)T

,

(13)
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where Mφin ∈ R
Nin×(Nin+Nb), Mφb ∈ R

Nb×(Nin+Nb).

Following Chinchapatnam et al. (2006), we define H− :=
(
Mφin

0

)
and combining (13)

and (12), we obtain

H+ᾱn+s = H−
s−1∑
k=0

σk ᾱ
n+k +

(
Δt f n+s

gn+s

)
.

Thus, it follows that

yn+s = AH−1+ H−A−1
s−1∑
k=0

σk yn+s + AH−1+
(

Δt f n+s

gn+s

)
.

Denoting by yn the exact solution and by ŷn the numerical solution, the error en = yn − ŷn

satisfies the equation

en+s = K
s−1∑
k=0

σken+k + En+s,

where En+s is the local error in the scheme (12) and K = AH−1+ H−A−1. Besides, since
En+s is small and therefore bounded, the error analysis can be analyzed using the identity

en+s = K
s−1∑
k=0

σken+k . (14)

By assuming that K is diagonalizable, i.e., K = D−1ΛD, we can define zn := Den and
therefore (14) is equivalent to

zn+s = Λ

s−1∑
k=0

σkzn+k .

Since Λ is a diagonal matrix, for every j = 1, . . . , d(nb + Nin) we have that zn+s
j =∑s−1

k=0 λ jσk z
n+k
j , and whose solution is given by znj = ∑s−1

k=0 C
j
k r

n
k , where C

j
k are arbitrary

complex constants and rk are the roots of the associated polynomial with the finite difference
equation.

Finally, since ‖en‖ goes to zero iff ‖zn‖ tends to zero, the method will be stable as long
as the eigenvalues of K belong to the stability region of

π(r , λ) = rs −
s−1∑
k=0

λσkr
i . (15)

As a consequence of the boundary locus technique (Lambert 1991), some stability regions
are displayed in Fig. 1.

3.3 Numerical results: IMQ-Div-Free RBF global method for evolutionary problems

In the sequel, we evaluate the accuracy of the previous scheme through BDF2. The objective
is to test the feasibility of the schemes by considering either non-homogeneous Dirichlet
conditions or non-homogeneous Navier-slip conditions on the system (7). To generate the
divergence-free kernel, see Definition 1, we use the scalar inverse multi-quadric (IMQ),
ψ(r) = √

(r + c)−1/2 with shape parameter c = 1.5. Since this type of kernel is very ill
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(a)

(b) (c)

Fig. 1 Stability regions using backward finite differences: a one level, b two levels and c three levels

Fig. 2 Domain Ω ⊂ R
2. The boundary is defined by the parametrization given in (16)

conditioned, we have used the Matlab package ADVANPIX for multi-precision calculus and
set the number of digits to 50. Henceforth, all the computations are done in the programming
languages Matlab and FreeFemm++. If the reader is interested in the codes we used, these
can be download from Breton (2020).

Henceforth, we consider a non-convex domainΩ ⊂ R
2 in star shape and whose boundary

is parametrized by the curve (see Fig 2)

C = {
(θ, ρ(θ)) ∈ R

2 : ρ(θ) = 0.8 + sin(6θ) + sin(3θ), θ ∈ [0, 2π)
}
. (16)
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For every type of boundary condition (Dirichlet or Navier-slip), we consider the following
exact solution of (7):

y1(x, y, t) = −y sin
(
(x2 + y2) sin(t2 + 1)

)
,

y2(x, y, t) = x sin
(
(x2 + y2) sin(t2 + 1)

)
,

p(x, y, t) = sin(x − y + t).

We compare the error of the velocity and pressure in the L∞-norm between the exact and
numerical solutions for several time steps Δt . The errors are denoted by ε y = yexact − yaprox
and ∇ε p = ∇ pexact − ∇ paprox, respectively. The results are presented in Tables 1 and 2.

As expected, the error decreases as the number of nodes increases. Also, the rate of
convergence of the velocity is higher than the rate of convergence of the gradient of the
pressure as expected. It can be appreciated that we obtain excellent results both for Dirichlet
and Navier-slip boundary conditions independently of the value of μ. Also, it is clear that
the eigenvalues of the Gram matrix are inside the stability region of the BDF schemes,
otherwise, the solution would not converge. On the other hand, we verify by performing
numerical experiments, that this is not true for small values of the shape parameter, namely,
for values of the order of c ≤ 10−2.

4 Local divergence-free RBFmethods for Stokes problems: LHI
technique

In this section an alternativemethod to the globalmethod is introduced for evolutionaryStokes
system, namely, a RBF-LHI vectorial technique, which corresponds to a generalization of
the local Hermite interpolation (LHI) scalar method, see, for instance, (Stevens et al. 2011).
Also, a generalization to the vectorial setting of a recent scalar method based on a new type
of RBFs called hybrid kernels, see Mishra et al. (2018), will be introduced.

This section is organized as follows: in Sect. 4.1 we first recall some concepts and notation
for the scalar LHI method, see González-Casanova et al. (2019) for a similar description.
After that, Sect. 4.2 contains the numerical algorithm for the steadyStokes system,meanwhile
Sect. 4.3 displays numerical examples with every type of boundary condition. We show that
for Div-free IMQ kernels, this local method is used to efficiently solve benchmark problems
for a large number of nodes, namely for more than 23,000 nodes. On the other hand, the
eigenvalues for this matrix, for Div-free IMQ kernels, can have positive real components
and, thus, cannot be used for evolutionary problems. To solve this problem, we introduce
vectorial Div-free hybrid kernels and formulate the evolutionary Stokes LHI method in Sect.
4.4. With respect to the temporal discretization, a implicit discretization scheme is described.
Finally, the numerical experiments concerning the evolutionary problems are presented in
Sect. 4.5.

4.1 A reminder of the scalar LHI method: notation and preliminary remarks

In what follows, and for the sake of completeness, we first briefly recall the scalar Local
Hermite Interpolation (LHI) method, introduced by Stevens et al. (2011) (see González-
Casanova et al. 2019 for a similar review). This scalar setting will be used later in this paper
to formulate the generalized vectorial technique to solve the Stokes problem.

123



RBF collocation and hybrid-LHI methods for Stokes systems… Page 11 of 35    15 

Ta
bl
e
1

G
lo
ba
lH

er
m
ite

co
llo

ca
tio

n-
IM

Q
er
ro
r
fo
r
th
e
St
ok
es

sy
st
em

w
ith

N
av
ie
r-
sl
ip

bo
un
da
ry

co
nd
iti
on
s.
H
er
e,
th
e
sh
ap
e
pa
ra
m
et
er

is
c

=
1.
5

μ
=

1
N

\Δ
t

1.
00

e−
02

5.
00

e−
03

1.
00

e−
03

5.
00

e−
04

M
ax

C
on

d

||e
y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
11

7
5.
94

e−
03

6.
32

e−
01

6.
47

e−
03

6.
44

e−
01

7.
87

e−
03

5.
52

e−
01

8.
17

e−
03

4.
86

e−
01

1.
55

e+
21

29
0

1.
34

e−
03

4.
39

e−
01

1.
38

e−
03

3.
90

e−
01

2.
54

e−
03

5.
41

e−
01

3.
38

e−
03

7.
23

e−
01

1.
71

e+
21

57
6

2.
08

e−
03

5.
31

e−
01

5.
72

e−
04

1.
45

e−
01

4.
62

e−
05

2.
10

e−
02

4.
46

e−
05

2.
06

e−
02

9.
35

e+
22

μ
=

1e
-0
6

N
\Δ

t
1.
00

e−
02

5.
00

e−
03

1.
00

e−
03

5.
00

e−
04

M
ax

C
on

d
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
11

7
5.
22

e−
02

2.
96

e−
01

4.
15

e−
02

2.
09

e−
01

1.
88

e−
02

2.
16

e−
01

2.
32

e−
02

3.
29

e−
01

6.
22

e+
28

29
0

2.
06

e−
03

1.
43

e−
02

1.
49

e−
03

1.
36

e−
02

9.
33

e−
04

6.
22

e−
03

8.
68

e−
04

4.
40

e−
03

8.
99

e+
28

57
6

2.
33

e−
03

1.
76

e−
02

5.
80

e−
04

5.
45

e−
03

2.
88

e−
05

2.
39

e−
04

9.
25

e−
06

1.
54

e−
04

3.
34

e+
29

123



   15 Page 12 of 35 L. Breton et al.

Ta
bl
e
2

G
lo
ba
lH

er
m
ite

co
llo

ca
tio

n-
IM

Q
er
ro
r
fo
r
th
e
St
ok
es

sy
st
em

w
ith

D
ir
ic
hl
et
bo
un
da
ry

co
nd
iti
on
s.
H
er
e,
th
e
sh
ap
e
pa
ra
m
et
er

is
c

=
1.
5

μ
=

1
N

\Δ
t

1.
00

e−
02

5.
00

e−
03

1.
00

e−
03

5.
00

e−
04

M
ax

C
on

d

||e
y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
11

7
7.
04

e−
03

8.
31

e−
01

6.
67

e−
03

7.
66

e−
01

5.
36

e−
03

5.
26

e−
01

5.
16

e−
03

5.
80

e−
01

3.
94

e+
19

29
0

9.
63

e−
04

3.
57

e−
01

9.
83

e−
04

3.
61

e−
01

9.
71

e−
04

3.
47

e−
01

9.
29

e−
04

3.
25

e−
01

3.
85

e+
19

57
6

5.
82

e−
04

1.
83

e−
01

1.
65

e−
04

6.
26

e−
02

4.
22

e−
05

1.
76

e−
02

4.
02

e−
05

1.
67

e−
02

7.
48

e+
20

μ
=

1e
-0
6

N
\Δ

t
1.
00

e−
02

5.
00

e−
03

1.
00

e−
03

5.
00

e−
04

M
ax

C
on

d
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
||e

y
|| ∞

||e
∇p

|| ∞
11

7
2.
40

e−
02

2.
34

e−
01

2.
39

e−
02

1.
95

e−
01

2.
98

e−
02

4.
12

e−
01

3.
52

e−
02

5.
60

e−
01

8.
11

e+
19

29
0

1.
77

e−
03

1.
01

e−
02

1.
05

e−
03

8.
88

e−
03

7.
99

e−
04

3.
69

e−
03

7.
84

e−
04

3.
30

e−
03

1.
68

e+
20

57
6

1.
90

e−
03

1.
35

e−
02

4.
77

e−
04

4.
00

e−
03

2.
26

e−
05

1.
92

e−
04

1.
47

e−
05

1.
31

e−
04

1.
65

e+
21

123



RBF collocation and hybrid-LHI methods for Stokes systems… Page 13 of 35    15 

In the LHI scalar approach, we aim to obtain the RBF approximation of the analytic
solution u of a linear steady partial differential well posed problem

{Lu(x) = f (x) in Ω,

Bu(x) = g(x) on ∂Ω,
(17)

where Ω ⊂ R
d represents the spatial domain, the right-hand sides f : Ω → R and g :

∂Ω → R are given, L and B are linear partial differential operators in the domain Ω and on
the contour ∂Ω , which are locally approximated in the following way:

First, let Ωn ⊂ Ω be a set of nt total number of scattered nodes. Consider now the
following subsets of Ωn . Let Ωc ⊂ Ωn be a subset of nc nodes called centers, see Fig. 3.

Let now Dk be a disk, of variable radius, with center at the kth node of Ωc, (recall that Ωc

is the set of centers of the disks), and consider the set of n(k) fixed number of nodesΩn ∩Dk ,
see again Fig. 3. To perform the local discretization we introduce the following notation:

Ωsc = {x (k)
1 , . . . , xNk

sc
} ⊂ Ωc be a set of Nk

sc nodes (called solution centers).
∂Ωfc = {xNk

sc+1, . . . , xNk
sc+Nk

fc
} ⊂ ∂Ω the boundary nodes.

Ωpdec = {xNk
sc+Nk

fc+1, . . . , xNk
sc+Nk

fc+Nk
pdec

} ⊂ Ω interior nodes related L.

For simplicity, we shall denote the node x (k)
1 as the center of the disk Dk for each k. Then,

every disk Dk defines a local sub-system as follows:

Lu(x) = f (x) x ∈ Ωpdec, (18)

Bu(x) = g(x) x ∈ ∂Ωfc, (19)

u(xi ) = hi xi ∈ Ωsc, (20)

where hi are the unknown values.
This procedure generates a set of local linear systems given by

A(k)β(k) = d(k), (21)

which are obtained by substituting in (18)–(20) the following radial ansatz for the local
domains displayed (in circles) in Fig. 3

û(k)(x) =
Nk
sc∑

j=1
β

(k)
j φ j (r) +

Nk
sc+Nk

fc∑
j=Nk

sc+1
β

(k)
j Bξ φ j (r) +

Nk
sc+Nk

fc+Nk
pdec∑

j=Nk
sc+Nk

fc+1

β
(k)
j Lξ φ j (r) + pmk . (22)

Here, k is the local system index, Nk
sc the number of solution centers in the local system,

Nk
pdec denotes the number of PDE centers in the local system and Nk

fc is the number of

boundary centers in the local system. Besides, Lξ φ j (r) := Lφ(‖x − ξ‖)|ξ=ξ j , Bξ φ j (r) :=

Fig. 3 Centers and local subdomains for the LHI method
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Bφ(‖x−ξ‖)|ξ=ξ j , being φ(r) the inverse multi-quadric and pmk a polynomial inRd of degree
m, which is an element of the null space of (17). The momentum condition is also required
in this step, see Stevens et al. (2011). Thus, the local linear system (21) can be expressed in
vectorial notation by defining A(k) (called Gram matrix) and the right-hand vector d(k) as
follows

A(k) =

⎡
⎢⎢⎣

�i j Bξ [�i j ] Lξ [�i j ] Pi j
Bx [�i j ] BxBξ [�i j ] BxLξ [�i j ] Bx [Pi j ]
Lx [�i j ] LxB¸[�i j ] LxL¸[�i j ] Lx [Pi j ]

Pji Bξ [Pji ] Lξ [Pji ] 0

⎤
⎥⎥⎦ and d(k) =

⎡
⎢⎢⎣
hi
gi
fi
0

⎤
⎥⎥⎦ ,

which is well known to be invertible, see Wendland (2004). Thus, we have that β(k) =
(A(k))−1d(k), and using (22), û(k)(x) can be rewritten by

û(k)(x) = H(x)β(k) = H(x)(A(k))−1d(k) = W (k)d(k), (23)

where

H (k)(x) = [
φ(‖x − ξ‖) Bξ φ(x − ξ) Lξ φ(‖x − ξ‖) pm(x)

]

andW (k) := H(x)(A(k))−1.W (k) is known as the vector of weights (Wendland 2004). Now,
if J is an arbitrary differential operator given, we can compute its value at û(k) by

J û(k)(x) = J H(x)(A(k))−1d(k) = J (W (k))(x)d(k).

Let uc =
[
u(x (k)

1 )
]n(k)

c

k=1
be the set of values of the exact solution at the centers of each disk Dk ,

which are unknown values (they belong to the vector d(k)). In order to obtain these unknown
values, we consider the following system of equations

h
(
x (k)
1

)
= W (k)

J
(
x (k)
1

)
d(k), k = 1, . . . , nc, (24)

where W (k)
J = J (W (k)) and (h,J ) is defined by ( f ,L).

We shall denote by Suc = b the linear system (24), whose variables are the values at
the solution centers Ωc. Recall that each row of the matrix S is composed by zero elements
except for the weights, (centers), corresponding to each disk Dk , that is, each row of size
nc, has only n(k)

c elements different form zero. Moreover, since nc � n(k)
c , the matrix S

is sparse. To built the matrix S efficiently, i.e., to compute the weights, we can solve the
following equations

A(k)W (k)
J
(
x (k)
1

)
= J H (k)(x (k)

1 ), k = 1, . . . , nc. (25)

Since the matrix S is sparse standard solvers and preconditioners can be used. Besides, it is
worth pointing out that using the method of lines and a proper numerical time integrator, non-
stationary linear PDEs problems can be solve by the LHI method. To review exhaustively
the LHI method, the interested reader can see (Stevens et al. 2011; Fasshauer 2007) and
references therein.
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4.2 Steady-state problems: Div-free RBF, LHI method

In this subsection, we study the stationary Stokes problem using divergence-free RBF. We
describe the vectorial LHI algorithm for the system

⎧
⎨
⎩

−μΔy + ∇ p = F in Q,

∇ · y = 0 in Q,

B(y) = g on �,

(26)

where F, g are known and B indicates the boundary condition operator (see (3)), such that
B(y) is a vector value function from R

d to R
d . Let us define a vector u := (un, un+1) =

(y, p) ∈ R
d+1 and the operatorsL,BD,BNs such that the left-hand side of (26) is given by

Lu := −¯Δun + ∇un+1 = (−μΔ,∇) · (un, un+1); ∇ · un = 0

and

BDu := un︸ ︷︷ ︸
Dirichlet

or BNsu : = (B1u,B2u), (27)

where
B1u = un · ν; B2u := (σ (un, un+1)ν)tg = (σ (u)ν)tg;︸ ︷︷ ︸

Navier-slip

As mentioned in Sect. 4.1, for each disk Dk with center xk1 , we must define a local system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

un(xi ) = hi in Ωk
sc ⊂ Ωsc

⋂
Dk,

Lu = F in Ωk
pdec ⊂ Ωpdec

⋂
Dk,

(27) on Ωk
fc ⊂ Ωfc

⋂
Dk .

(28)

To solve the systems (28), we first define the matrix-valued kernel

� =
[

�Div 0
0 ψ

]
: Rd → R

(d+1)×(d+1),

where �Div = Δ × ∇ × ψ = {−ΔI + ∇∇T }ψ(x) : R
d → R

d+1 is a divergence-free
positive definite kernel, Δ is the Laplace operator, I the identity matrix, and ψ is a global
C∞ positive definite scalar RBF.

Since we are choosing a free divergence radial kernel, the incompressibility equation is
missing, and therefore, we lack the corresponding differential operator. This is the reason
why in (28), we do not have the pressure as an unknown, never the less we will explain how
it is possible compute it. Defining the canonical projection operator I j : R(d+1) → R as
I j (u) = u j , and the operator L j (u) = I j (Lu), we have that system (28) can be written by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I j (un(xi )) = I j (hi ) j = 1...d, xi ∈ Ωk
sc ⊂ Ωsc

⋂
Dk,

L j (u)(xi ) = Fj(xi ) j = 1...d, xi ∈ Ωk
pdec ⊂ Ωpdec

⋂
Dk,

(27) on Ωk
fc ⊂ Ωfc

⋂
Dk .

(29)
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Therefore, using the generalized interpolation collocation method (Wendland 2004), the
ansatz for the Stokes equation is given by

(ŷ(k), p̂(k))(x) =
d∑

i=1

Nk
sc∑

j=1

I ξ
i �(x − ξ

sc(k)
j )αk

(i−1)Nk
sc+ j

+
d∑

i=1

Nk
fc∑

j=1

Bξ
i �(x − ξ

fc(k)
j )βk

(i−1)Nk
fc+ j

+
d∑

i=1

Nk
pdec∑
j=1

Lξ
i �(x − ξpdec(k))βk

(i−1)Nk
pdec+ j

, (30)

where (γ, α, β) ∈ R
d(Nk

sc+Nk
fc+Nk

pdec), Nsc, Nfc, Npdec are the total numbers of local boundary,
solution and pde centers respectively.

The terms I ξ
i �, Bξ

i �, Lξ
i � are vector-valued functions from R

d × R
d to R

d+1 defined

by the application of the operators I ξ
i , B

ξ
i , L

ξ
i to each row of the kernel �, respectively.

Putting the ansatz (30) into the local Stokes system (29), we obtain the following local
Gram matrix

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I x1 I
ξ
1 � . . . I x1 I

ξ
d � I x1 B

ξ
1� . . . I x1 B

ξ
d� I x1 L

ξ
1� . . . I x1 L

ξ
d�

...
. . .

...
...

. . .
...

...
. . .

...

Lx
1 I

ξ
1 � . . . Lx

1 I
ξ
d � Lx

1B
ξ
1� . . . Lx

1B
ξ
d� Lx

1L
ξ
1� . . . Lx

1L
ξ
d�

...
. . .

...
...

. . .
...

...
. . .

...

Bx
1 I

ξ
1 � . . . Bx

1 I
ξ
d � Bx

1B
ξ
1� . . . Bx

1B
ξ
d� Bx

1 L
ξ
1� . . . Bx

1 L
ξ
d�

...
. . .

...
...

. . .
...

...
. . .

...

Bx
d I

ξ
1 � . . . Bx

d I
ξ
d � Bx

dB
ξ
1� . . . Bx

dB
ξ
d� Bx

d L
ξ
1� . . . Bx

d L
ξ
d�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (31)

which in turn let us to compute the weights of the differential operator L j by solving the
following systems

A(k)W (k)
L j

(
x sc(k)1

)
= L j H

(k)(x sc(k)1 ), k = 1, ...., Nsc, (32)

where Hk(x) is given by

H (k)(x) =
(
I ξ
1 �(‖x − ξ sc(k)‖) . . .Bξ

1�(‖x − ξ fc(k)‖) . . . Lξ
d�(‖x − ξpdec(k)‖)

)T
.

(33)
Once the weights are known, we can build the sparse global matrix from the following
equations

W (k)
L j

(
x sc(k)1

)
d(k) = Fj (x

sc(k)
1 ) k = 1, .., Nsc, j = 1, . . . , d, (34)

where

d(k) =
(
y1(x

sc(k)), . . . , yd(x
sc(k)), g1(x

fc(k)), ..., gd(x
fc(k)), F1(x

pdec(k)), . . . , Fd(x
pdec(k))

)T
.

Defining the unknown values of the vector field as

y(x sc) =
(
y1(x

sc
1 ), . . . , y1(x

sc
Nsc

), ..., yd(x
sc
Nsc

)
)T
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and the known values as g(x fc) ∈ R
dNfc , F(xpde) ∈ R

dNpde , respectively.
The global system induced by (34) can be expressed in matrix form as follows:

(
W y

L W B
L W L

L

)
⎡
⎣

y(x sc)
g(x fc)
F(xpde)

⎤
⎦ = [

F(x sc)
]
, (35)

where W y
L ∈ R

dNsc×dNsc , WB
L ∈ R

dNsc×dNfc ,WB
L ∈ R

dNsc×dNpde .
Therefore, to compute the velocity field, we must solve the following linear system

W y
Ly(x

sc) = F(x sc) − WB
L g(x fc) − WL

L F(xpde). (36)

To compute the pressure gradientweneed to obtain theweights linked to the partial derivatives
of the pressure component of the local Anzats. In other words, we need to compute the weight
of the operators

LPi (y, p) ≡ ∂ Id+1(y, p)

∂xi
, i = 1, 2. (37)

Again, this is performed in solving the following local systems:

A(k)W (k)
LPi

(
x sc(k)1

)
= LPi H

(k)(x sc(k)1 ), k = 1, . . . , Nsc. (38)

Once these weights are obtained and assuming that y(x sc) have been computed via (36), we
just have to do the following matrix multiplication

WLP

⎡
⎣

y(x sc)
g(x fc)
F(xpde)

⎤
⎦ = [∇ p(x sc)

]
. (39)

Remark 41 It is important to highlight that in order to avoid singularity of the sparse
system, we need that x sc(k)1 /∈ Ωk

pdec ( see Stevens et al. 2011).

4.3 Numerical results: stationary problem, LHI-Div-free IMQmethod

Using the LHI Div-free IMQ-RBFs technique, we present numerical results concerning to
the convergence order for Dirichlet and Navier-slip boundary condition. Also we verify that
the errors, even for small number of support centers and different values of the diffusion
parameter μ are excellent.

We consider the non-convex domainwhose boundarywas defined in (16) and the following
exact solution to (26):

u(x) =
(
−π ysin(

π

2
(x2 + y2)), πxsin(

π

2
(x2 + y2)

)
, p(x) = sin(x − y).

Here, the non-dimensional shape parameter is c = 0.1. Tables 3, 4 contains the approximation
orders in the L2 and L∞ norms of the velocity field and pressure. We denote such an errors
by eu := uexact − uaprox and e∇ p := ∇pexact − ∇paprox. In all experiments, we have used
extended precision via the mpfr++ library in c++ to overcome the ill condition Gram matrix.

From Tables 3 and 4, it can be appreciated that we obtain spectral order of convergence
as the number of local nodes increases or equivalently if the fill distance decreases. Also
the results are excellent both for μ = 1 and μ = 10−3, and the error consistently decreases
as the number of local nodes increases. The main point to be noted from this tables is that
we can use up to 24,000 total number of nodes in the computations. This can not be done
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with global collocation methods due to the high value of the condition number of the Gram
matrix.

4.4 Evolutionary problems: hybrid-Div-free RBF, LHI method and BDF scheme

In this subsection we formulate a RBF-LHI vectorial technique for the evolutionary Stokes
problem ⎧⎪⎪⎨

⎪⎪⎩

yt + L(y, p) = f in Q,

∇ · y = 0 in Q,

By = g on �,

y(·, 0) = y0(·) in Q,

(40)

where L(y, p) = −μΔy + ∇ p.
Observe that, for every t ∈ (0, T ), (40) can be seen as a stationary Stokes equation

⎧
⎨
⎩

L(y, p) = F in Ω,

∇ · y = 0 in Ω,

By = g on ∂Ω,

(41)

where F = f − yt .
This implies that we can use the weight of the stationary system (see Eq. (32)) to approx-

imate (41). Thus, using (34) we have

(
W y

L W B
L W L

L

)
⎡
⎣

y(t; x sc)
g(t; x fc)
F(t; xpde)

⎤
⎦ = [

F(t; x sc)] . (42)

Now, assuming that x sc = xpde, we get the following ODE system

(I − WL
L ) yt (t; x sc) = −W y

L y(t; x sc) − WB
L g(t; x fc) + (I − WL

L )F(t; xsc), (43)

where the boundary condition have been imposed in the LHI weights.
To solve the above system, we use a BDF2 scheme. Thus, in each time step we shall solve

(
I − WL

L + 2Δt

3
W y

L

)
yn+2 =

(
I − WL

L

)(2Δt

3
Fn+2 + 4

3
yn+1 − 1

3
yn

)
−2Δt

3
WB

L gn+2.

(44)

4.5 Numerical results: evolutionary problem, Div-free Hybrid RBF-LHI method

In this subsection we use the theoretical description of the RBF-LHI method presented in
Sect. 4.4, to solve the unsteady Stokes system. We also introduce the concept of Divergence
free hybrid radial basis function, a generalization of the scalar hybrid RBF (see Mishra et al.
(2018)), which allows us to build a global LHI matrix whose eigenvalues have negative real
components. We present numerical results for different benchmark problems.

We stress that, for some cases and according to extensive numerical experimentation, no
matter which parameters c, μ or h we select, it is not possible to obtain negative eigenvalues
for IMQ kernel, thus most ODE solvers are unstable.

On the other hand, for hybrid kernels, the eigenvalues can always be obtained to be negative
depending on the parameters we choose, thus providing the stability condition for ODE’s
solvers. We first define the concept of Div-free hybrid kernel.
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Definition 2 Let r = ‖x‖, ψ1(r) = exp−cr2 and ψ2(r) = r2n+1. The divergence free hybrid
kernel �Div : Rd → R

d+1 is defined by

�Div(x) = Δ × ∇ × ψ = {−ΔI + ∇∇T }(ψ1(x) + γ1ψ2(x)).

where γ1 is a positive real number.

By direct computation, we obtain

�Div(x) =
(

−2 c e−c r2
(
2 c (y1 − y2)2 − 1

)
4 c2 e−c r2 (x1 − x2) (y1 − y2)

4 c2 e−c r2 (x1 − x2) (y1 − y2) −2 c e−c r2
(
2 c (x1 − x2)2 − 1

)
)

+ γ1 (2n + 1) r2n−3
(− ((y1 − y2)2 (2n − 1) + r2

)
(x1 − x2) (y1 − y2) (2n − 1)

(x1 − x2) (y1 − y2) (2n − 1) − ((x1 − x2)2 (2n − 1) + r2
)
)

and the combined velocity–pressure kernel is given by

�(x) =
(

�Div(x) 0
0 e−c2 r + γ2 r2m+1

)
. (45)

Here, γ2 is corresponding weight relative to the hybrid kernel related to the pressure.
In the following experiments and for stability reasons, we use a weight parameter γ1, a

shape parameter c1 for the velocity and the corresponding values γ2; c2 for the pressure. Also
we shall use the values n = 3 and m = 1 in Eq. (45), ie. r7 for the �Div vector component
and r3 for the scalar component.

We note that the condition numbers of the local and global Grammatrices are considerable
lower than for the non-hybrid, IMQ-RBF. This is in agreementwith a recently, a new approach
to reduce the ill-conditioning problem in RBF approximations by using a hybrid Gaussian-
cubic kernel was proposed (Mishra et al. 2018). The basic idea behind such a hybridization
is to obtain a kernel which utilizes the merits of two different kernels while compensating
for the limitations of each and keeping the formulation as a standard RBF method.

The numerical computations of Tables 5, 6, 7 and 8 were obtained by using divergence
free hybrid kernels and considering the following analytical solution to (40)

y1(x, y, t) = −π y sin
(π

2
(t x2 + y2)

)
sin(20π t),

y2(x, y, t) = −π y sin
(π

2
(t x2 + y2)

)
sin(20π t)t,

p(x, y, t) = sin(x − y + t).

The total number of nodes for Tables 5, 6, 7 and 8 is 1010. To better appreciate the
convergence of the method as the fill distance decrease we scale the domain by factor α

ranging from 1 to 10−5.
As in Sect. 3.3, we compare the velocity error in the L2-norm between the exact and

numerical solutions, i.e., ε y = yexact − yaprox.
From the tables presented in this subsection, we conclude that the local condition number

for hybrid kernels are several orders of magnitude smaller than the values of tables presented
in Sect. 4.3, which corresponds to the condition number for inversemulti-quadrics.We stress,
however, that the error is greater for hybrids kernels than for IMQ. The values of the shape
parameters were obtained by direct trial and error computation. Of course, up to now, there is
no theory that tells us how to obtain these values. It is important to note that to obtain a good
condition number, we only need to decrease the value γ1 and decrease the shape parameter
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of the pressure for a fixed γ2. Here, γ1 is the parameter of the convex combination of the
hybrid kernel related to the velocity, and γ2 the parameter related to the pressure. This means
that the algorithm is relatively stable with respect to the variation of the parameters.

5 Numerical control problem: RBF-Div-free LHI techniques and FEM
method

The numerical solution of the approximate controllability problem for the two-dimensional
Stokes system with few scalar controls is carried out in this section. Here, both Dirichlet and
Navier-slip boundary conditions are considered. The numerical implementation follows the
method formerly developed through RBF-LHI technique. The numerical results obtained by
this method are compared against the finite element method (FEM) formulation for Dirichlet
and Navier-slip boundary conditions.

Following Glowinski et al. (2008), the conjugate gradient method, CGM, is implemented
with a stopping criteria of ε = 10−8 for solving the dual system (1), (6). Again, the domain
Ω ⊂ R

2 is the star whose boundary is parametrized by the curve

C =
{
(θ, ρ(θ)) ∈ R

2 : ρ(θ) = 0.8 + sin(6θ) + sin(3θ), θ ∈ [0, 2π)
}
. (46)

The observation set ω= {(x, y) ∈ R
2 : x2

2.5e−3 + y2

4e−4 < 1.0}, and T = 1.0.
In all cases, we use a uniform mesh of 1010 points generated with FreeFem++, the time

step size is Δt = 5× 10−3 and diffusion coefficient μ = 1e-03. For the initial condition, we
choose

(y01 , y
0
2 ) = (−102π y cos

(π

2
(x2 + y2)

)2
, 102π x cos

(π

2
(x2 + y2)

)2
)

Regarding the functional (4), we set the regularization parameters β1 = 1.0e-03 , β−1
2 = 0

by having controls with both non-zeros scalar component (v = (v1, v2)) and β−1
1 = 0, β2 =

1.0e-03 by considering controls with one scalar control (either v = (v1, 0) or v = (0, v2)).
For the numerical experiments, we use a triangular mesh for two specific reasons, the first

one is to have a fair comparison between RBF-LHI and finite element, and the second is
because CGM requires to calculate integrals over the domain and although it is possible to
compute them for scattered nodes, it is more efficient to use the triangulation for LHI-RBF
method to calculate integrals with P1-type elements.

5.1 Divergence free RBF-LHI method for the control problem

To generate the divergence free kernel for the LHI method, we use hybrid kernel with n = 3
and m = 1. In particular, for Dirichlet boundary, we used the following set of parameter:
γ1 = 1e-01,γ2 = 1.0e-5,c1 = 0.5,c2 = 5.e-8. For Navier-slip boundary conditions, we use:
γ1 = 1e-03,γ2 = 1e-08,c1 = 1.0,c2 = 5.e-10.

Table 9 shows the number of iterations to achieve the stopping criteria ε = 10−8 in the
CGM implemented.

Table 10 andFigs. 4 and5 show the L2-normof the velocity vector field for the approximate
control problems as a function of time. The numerical control function v has all possible
structures, namely, v = 0, v = (v1, v2), v = (v1, 0) and v = (0, v2).
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Table 9 Number of iterations for
obtaining the convergence criteria
of the CGM for Hybrid LHI-RBF

B.C v = (v1, v2) v = (v1, 0) v = (0, v2)

Navier-slip 116 68 99

Dirichlet 78 208 304

Table 10 Evolution in time of the L2-norm for the solution of the approximate control problem with few
scalar controls (LHI-RBF with hybrid kernel) μ = 1.0e−03

Boundary condition = Dirichlet

t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.103E+00 6.103E+00 6.103E+00 6.103E+00

1.0E−01 1.561E+00 1.551E+00 1.551E+00 1.550E+00

2.0E−01 7.845E−01 7.658E−01 7.651E−01 7.656E−01

3.0E−01 4.221E−01 3.988E−01 3.977E−01 3.988E−01

4.0E−01 2.318E−01 2.064E−01 2.058E−01 2.066E−01

5.0E−01 1.283E−01 1.025E−01 1.032E−01 1.028E−01

6.0E−01 7.114E−02 4.664E−02 4.943E−02 4.694E−02

7.0E−01 3.949E−02 1.797E−02 2.319E−02 1.818E−02

8.0E−01 2.193E−02 5.207E−03 1.167E−02 5.203E−03

9.0E−01 1.218E−02 1.192E−03 5.297E−03 1.118E−03

1.0E+00 6.761E−03 8.748E−05 1.093E−03 1.271E−04

Boundary condition = Navier-Slip

t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.982E+00 6.982E+00 6.982E+00 6.982E+00

1.0E−01 3.495E+00 3.335E+00 3.385E+00 3.262E+00

2.0E−01 2.413E+00 2.112E+00 2.213E+00 2.004E+00

3.0E−01 1.713E+00 1.322E+00 1.473E+00 1.210E+00

4.0E−01 1.226E+00 7.921E−01 9.911E−01 6.993E−01

5.0E−01 8.801E−01 4.454E−01 6.824E−01 3.838E−01

6.0E−01 6.331E−01 2.313E−01 4.845E−01 2.027E−01

7.0E−01 4.559E−01 1.113E−01 3.460E−01 1.078E−01

8.0E−01 3.285E−01 5.040E−02 2.260E−01 5.858E−02

9.0E−01 2.368E−01 1.815E−02 1.146E−01 2.558E−02

1.0E+00 1.708E−01 2.149E−03 5.506E−02 6.359E−03

For Dirichlet boundary condition γ1 = 1e−01,γ2 = 1e−05, and for Navier-slip γ1 = 1e−03,γ2 = 1e−08

Note that the solution of system (1) with Dirichlet boundary conditions, namely the state
variable, decay faster to zero in the L2-norm sense than the solution corresponding to the
Navier-slip homogeneous boundary conditions. Numerically, this behavior is described in
Table 10.

Remark 51 The previous results are valid for homogeneous Navier-slip boundary con-
ditions; however, to understand the balance between Dirichlet and Navier-slip conditions
and the convergence order of the state associated to the approximate control problem, the
friction between the fluid and the boundary should be considered (that is, non-homogeneous
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Fig. 4 L2-norm square solution of the velocity field (as a function of time) for the approximate control problem
with controls v = 0 (black), v = (v1, v2) (pink), v = (v1, 0) (red) and v = (0, v2) with Dirichlet boundary
condition. LHI-RBF hybrid kernel, with parameters γ1 = 1e−01,γ2 = 1.0e−5,c1 = 0.5,c2 = 5.e−8

Fig. 5 L2-norm square solution of the velocity field (as a function of time) for the approximate control problem
with controls v = 0 (black), v = (v1, v2) (pink), v = (v1, 0) (red) and v = (0, v2) with Navier-slip boundary
condition. LHI-RBF hybrid kernel, with parameters γ1 = 1e−03,γ2 = 1e−08,c1 = 1.0,c2 = 5.e−10

Navier-slip conditions). Also, it might be important to review the stability for the Stokes
system with these Navier-slip conditions (Ding et al. 2018).

5.2 Finite element method, FEM, for the control problem

Taking as starting point the classical optimal control problem for the Stokes system (Glowin-
ski et al. 2008), we can solve the optimality system given in (1) (5) and (6) in a similar way.
In our case, the time−space discretization of the coupled system (1), (6), lies in a mixed finite
element formulation in space using P2-type elements for the velocity and P1-type elements
for the pressure, meanwhile finite differences are used for the time discretization (seeGlowin-
ski and Pironneau 1992; Girault and Raviart 2012; Allaire 2005 for a complete review). It has
to be pointed that to solve the unsteady Stokes equation with Navier-slip boundary condition,
we used a penalization method given in Dione and Urquiza (2015).
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Table 11 Number of iterations
for obtaining the convergence
criteria of the CGM for FEM

B.C v = (v1, v2) v = (v1, 0) v = (0, v2)

Navier-slip 73 73 65

Dirichlet 56 54 49

Table 12 Evolution in time of the L2-norm for the solution of the approximate control problem with Dirichlet
boundary conditions and few scalar controls, (FEM) μ = 1.0e−03

Boundary condition = Dirichlet

t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.103E+00 6.103E+00 6.103E+00 6.103E+00

1.0E−01 1.572E+00 1.561E+00 1.560E+00 1.560E+00

2.0E−01 8.014E−01 7.814E−01 7.788E−01 7.799E−01

3.0E−01 4.351E−01 4.101E−01 4.070E−01 4.085E−01

4.0E−01 2.409E−01 2.135E−01 2.111E−01 2.121E−01

5.0E−01 1.342E−01 1.065E−01 1.059E−01 1.055E−01

6.0E−01 7.498E−02 4.864E−02 5.097E−02 4.798E−02

7.0E−01 4.192E−02 1.879E−02 2.463E−02 1.854E−02

8.0E−01 2.344E−02 5.397E−03 1.326E−02 5.418E−03

9.0E−01 1.311E−02 1.120E−03 6.087E−03 1.256E−03

1.0E+00 7.333E−03 7.110E−05 1.076E−03 1.371E−04

Boundary condition = Navier-Slip
t v = 0 v = (v1, v2) v = (v1, 0) v = (0, v2)

0.0E+00 6.934E+00 6.934E+00 6.934E+00 6.934E+00

1.0E−01 2.496E+00 2.359E+00 2.403E+00 2.345E+00

2.0E−01 1.660E+00 1.409E+00 1.531E+00 1.388E+00

3.0E−01 1.173E+00 8.462E−01 1.048E+00 8.255E−01

4.0E−01 8.519E−01 4.890E−01 7.634E−01 4.731E−01

5.0E−01 6.277E−01 2.652E−01 5.884E−01 2.563E−01

6.0E−01 4.663E−01 1.335E−01 4.587E−01 1.319E−01

7.0E−01 3.480E−01 6.361E−02 3.254E−01 6.801E−02

8.0E−01 2.604E−01 3.009E−02 1.747E−01 3.719E−02

9.0E−01 1.952E−01 1.188E−02 5.537E−02 1.668E−02

1.0E+00 1.465E−01 1.060E−03 1.904E−02 2.582E−03

Table 11 shows the number of iterations to achieve the stopping criteria ε = 10−8 in the
CGM implemented.

Table 12 and Figs. 6 and 7 display the evolution in time of the L2-norm of the velocity
vector field y = (y1, y2), which represents the solution to the approximate control problem
(1), and where the control function v has different structure, namely, v = 0, v = (v1, v2),
v = (v1, 0) and v = (0, v2).

As we can see from Tables 10, 11 and 12, the RBF-LHI method or FEM are similar,
nevertheless, RBF-LHI method has the advantage of being mesh-less and showing more
accuracy using divergence free kernels. The number of iterations for the CGM necessary to
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Fig. 6 Evolution in time of the L2-norm square for the solution of the approximate control problem with
Dirichlet boundary conditions and v = 0 (black), v = (v1, v2) (pink), v = (v1, 0) (red) and v = (0, v2)
(blue). (FEM)

Fig. 7 Evolution in time of the L2-norm square for the solution of the approximate control problem with
Dirichlet boundary conditions and v = 0 (black), v = (v1, v2) (pink), v = (v1, 0) (red) and v = (0, v2)
(blue). (FEM)

converge is higher for the RBF-LHI method; however it should be noted that for RBF-LHI
technique, we use P1-type elements to compute the integral expressions in the CGM, while
for FEM we use P2-type elements.

6 Conclusions and final remarks

In this article, we have introduced radial basis function (RBF) methods to approximate the
solution of Stokes equations and controllability problems for the Stokes system with few
internal scalar controls. Dirichlet or Navier-slip boundary conditions are used. Two type of
radial basis function solvers for the direct Stokes problems, one global and the other local
were formulated. All the numerical experiments in his work are done in a star shape, thus a
non-convex domain. Direct global solvers for the evolutionary Stokes problem are built using
Hermite interpolation technique based on divergence free IMQ-RBFs. This allows to satisfy
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the incompressibility condition, at a discrete level, and to easily incorporate Navier-slip or
Dirichlet boundary conditions.

In our article, and as far as to our knowledge, we imposed for the first time Navier-slip
boundary conditions for Stokes equations. Stability analysis for this method shows that the
real part of the eigenvalues are all negative if the shape parameter is properly selected. This
implies that the method is stable for backward differences formulas (BDFs). Exponential
convergence is numerically studied.

On the other hand, we find that the condition number, which is computed using extended
precession, also grows in an exponential form; thus, the number of nodes that can be used
is relatively small. To use larger number of nodes, we use a local Hermite interpolation
technique, LHI. For the stationary Stokes problem, we numerically find that the convergence
is exponential as the fill distance tends to zero.

We also investigated the evolutionary Stokes problem with LHI-IMQ-RBFs and we find
that, by means of extensive numerical experimentation, see Sect. 4.5, it is not possible to
find a suitable set of shape parameters such that the real component of the eigenvalues of the
global ODE−LHImatrix are all negative. Thus, the evolutionary Stokes equations discretized
by the IMQ-LHI method do not converge when integrated by BDF techniques. Moreover,
for both the stationary and evolutionary Stokes problem, the condition number of the local
matices grows exponentially as the fill distance decreases.

To deal with these two problems, namely, the high condition number of the local matri-
ces and the existence of positive real eigenvalues of the global matrix, we generalized a
recently formulated scalar hybrid kernels to a vectorial setting. Scalar hybrid kernels are a
liner combination of Gaussians and odd Poly-harmonic splines. In our work, we introduce
divergency free matrix hybrid radial basis kernels (Div-Free Hybrid). We find that the LHI
Div-free Hybrid algorithm, for both Dirichlet and Navier-slip boundary conditions, reduces
the condition number of the local matrices by several orders of magnitude and that the real
components of the eigenvalues, when parameters are properly selected, can be all negative.
The convergence of the solution gives excellent results which depends on the number of local
nodes and the size of the parameters related to the hybrid kernel.

A final contribution of our work is that we solved, for first time, the approximate control-
lability problem for the Stokes equations using the conjugate gradient method and solving
the direct and adjoint equations by LHI Div-free Hybrid RBF technique. This problem is also
solved by the Finite element method. Comparative results are in excellent agreement.

For hybrid collocation of scalar stationary PDE problems, it has been reported that the
condition numbers and the errors are stable, i.e., do not varies, in a wide range of values of
the shape parameter (Zhang 2019; Pankaj et al. 2019) for time-dependent scalar PDEs. On
the other hand, for the evolutionary vector Stokes problem teated in this work, we have not
analyzed the sensibility or stability of the hybrid algorithms with respect to the variation of
the parameters. Further research is in curse to study this point.
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